Appropriate Use of Advanced Technologies for Radiation Therapy and Surgery in Oncology


Book Description

In recent years, the field of oncology has witnessed a number of technological advances, including more precise radiation therapy and minimally invasive surgical techniques. Three-dimensional (3D), stereotactic, and proton-beam radiation therapy, as well as laparoscopy and robotic surgery, can enhance clinician's ability to treat conditions that were clinically challenging with conventional technologies, and may improve clinical outcomes or reduce treatment-related problems for some patients. Both patients and physicians seek access to these new technologies, which are rapidly being adopted into standard clinical practice. Such demand is often propelled by marketing that portrays the new technologies as the "latest and greatest" treatments available. However, evidence is often lacking to support these claims, and these novel technologies usually come with higher price tags and are often used to treat patients who might have achieved similar benefits from less expensive, conventional treatment. The increased cost of novel treatments without adequate assessment of how they affect patient outcomes is a pressing concern given that inappropriate use of expensive technologies is one of the key factors that threaten the affordability of cancer care in the United States. To explore these issues further, the National Cancer Policy Forum (NCPF) of the Institute of Medicine organized a workshop in July 2015. This is the third NCPF workshop in a series examining the affordability of cancer care. Participants explored clinical benefits and comparative effectiveness of emerging advanced technologies for cancer treatment in radiation therapy and surgery and potential strategies to assess the value and promote optimal use of new technologies in cancer treatment. This report summarizes the presentations and discussions from the workshop.




New Technologies in Radiation Oncology


Book Description

- Summarizes the state of the art in the most relevant areas of medical physics and engineering applied to radiation oncology - Covers all relevant areas of the subject in detail, including 3D imaging and image processing, 3D treatment planning, modern treatment techniques, patient positioning, and aspects of verification and quality assurance - Conveys information in a readily understandable way that will appeal to professionals and students with a medical background as well as to newcomers to radiation oncology from the field of physics




Advances in Radiation Oncology


Book Description

This book concisely reviews important advances in radiation oncology, providing practicing radiation oncologists with a fundamental understanding of each topic and an appreciation of its significance for the future of radiation oncology. It explores in detail the impact of newer imaging modalities, such as multiparametric magnetic resonance imaging (MRI) and positron emission tomography (PET) using fluorodeoxyglucose (FDG) and other novel agents, which deliver improved visualization of the physiologic and phenotypic features of a given cancer, helping oncologists to provide more targeted radiotherapy and assess the response. Due consideration is also given to how advanced technologies for radiation therapy delivery have created new treatment options for patients with localized and metastatic disease, highlighting the increasingly important role of image-guided radiotherapy in treating systemic and oligometastatic disease. Further topics include the potential value of radiotherapy in enhancing immunotherapy thanks to the broader immune-stimulatory effects, how cancer stem cells and the tumor microenvironment influence response, and the application of mathematical and systems biology methods to radiotherapy.




EBOOK: Purchasing to Improve Health Systems Performance


Book Description

Purchasing is championed as key to improving health systems performance. However, despite the central role the purchasing function plays in many health system reforms, there is very little evidence about its development or its real impact on societal objectives. This book addresses this gap and provides: ·A comprehensive account of the theory and practice of purchasing for health services across Europe ·An up-to-date analysis of the evidence on different approaches to purchasing ·Support for policy-makers and practitioners as they formulate purchasing strategies so that they can increase effectiveness and improve performance in their own national context ·An assessment of the intersecting roles of citizens, the government and the providers Written by leading health policy analysts, this book is essential reading for health policy makers, planners and managers as well as researchers and students in the field of health studies. Contributors: Toni Ashton, Philip Berman, Michael Borowitz, Helmut Brand, Reinhard Busse, Andrea Donatini, Martin Dlouhy, Antonio Duran, Tamás Evetovits, André P. van den Exter, Josep Figueras, Nick Freemantle, Julian Forder, Péter Gaál, Chris Ham, Brian Hardy, Petr Hava, David Hunter, Danguole Jankauskiene, Maris Jesse, Ninel Kadyrova, Joe Kutzin, John Langenbrunner, Donald W. Light, Hans Maarse, Nicholas Mays, Martin McKee, Eva Orosz, John Øvretveit, Dominique Polton, Alexander S. Preker, Thomas A. Rathwell, Sabine Richard, Ray Robinson, Andrei Rys, Constantino Sakellarides, Sergey Shishkin, Peter C. Smith, Markus Schneider, Francesco Taroni, Marcial Velasco-Garrido, Miriam Wiley




The Modern Technology of Radiation Oncology


Book Description

Details technology associated with radiation oncology, emphasizing design of all equipment allied with radiation treatment. Describes procedures required to implement equipment in clinical service, covering needs assessment, purchase, acceptance, and commissioning, and explains quality assurance issues. Also addresses less common and evolving technologies. For medical physicists and radiation oncologists, as well as radiation therapists, dosimetrists, and engineering technologists. Includes bandw medical images and photos of equipment. Paper edition (unseen), $145.95. Annotation copyrighted by Book News, Inc., Portland, OR




Clinical Radiation Oncology


Book Description

Perfect for radiation oncology physicians and residents needing a multidisciplinary, treatment-focused resource, this updated edition continues to provide the latest knowledge in this consistently growing field. Not only will you broaden your understanding of the basic biology of disease processes, you'll also access updated treatment algorithms, information on techniques, and state-of-the-art modalities. The consistent and concise format provides just the right amount of information, making Clinical Radiation Oncology a welcome resource for use by the entire radiation oncology team. Content is templated and divided into three sections -- Scientific Foundations of Radiation Oncology, Techniques and Modalities, and Disease Sites - for quick access to information. Disease Sites chapters summarize the most important issues on the opening page and include a full-color format, liberal use of tables and figures, a closing section with a discussion of controversies and problems, and a treatment algorithm that reflects the treatment approach of the authors. Chapters have been edited for scientific accuracy, organization, format, and adequacy of outcome data (such as disease control, survival, and treatment tolerance). Allows you to examine the therapeutic management of specific disease sites based on single-modality and combined-modality approaches. Features an emphasis on providing workup and treatment algorithms for each major disease process, as well as the coverage of molecular biology and its relevance to individual diseases. Two new chapters provide an increased emphasis on stereotactic radiosurgery (SRS) and stereotactic body irradiation (SBRT). New Associate Editor, Dr. Andrea Ng, offers her unique perspectives to the Lymphoma and Hematologic Malignancies section. Key Points are summarized at the beginning of each disease-site chapter, mirroring the template headings and highlighting essential information and outcomes. Treatment algorithms and techniques, together with discussions of controversies and problems, reflect the treatment approaches employed by the authors. Disease Site Overviews allow each section editor to give a unique perspective on important issues, while online updates to Disease Site chapters ensure your knowledge is current. Disease Site chapters feature updated information on disease management and outcomes. Four videos accessible on Expert Consult include Intraoperative Irradiation, Prostate Brachytherapy, Penile Brachytherapy, and Ocular Melanoma. Thirty all-new anatomy drawings increase your visual understanding. Expert Consult eBook version included with purchase. This enhanced eBook experience allows you to search all of the text, figures, and references from the book on a variety of devices.




Accelerated Partial Breast Irradiation


Book Description

Accelerated partial breast irradiation (APBI) is being rapidly introduced into the clinical management of early breast cancer. APBI, in fact, encompasses a number of different techniques and approaches that include brachytherapy, intraoperative, and external beam techniques. There is currently no single source that describes these techniques and their clinical implementation. This text is a concise handbook designed to assist the clinician in the implementation of APBI. This includes a review of the principles that underlie APBI, a practical and detailed description of each technique for APBI, a review of current clinical results of APBI, and a review of the incidence and management of treatment related complications.




Radiotherapy in Cancer Care


Book Description

Cancer treatment is complex and calls for a diverse set of services. Radiation therapy is recognized as an essential tool in the cure and palliation of cancer. Currently, access to radiation treatment is limited in many countries and non-existent in some. This lack of radiation therapy resources exacerbates the burden of disease and underscores the continuing health care disparity among States. Closing this gap represents an essential measure in addressing this global health equity problem. This publication presents a comprehensive overview of the major topics and issues to be taken into consideration when planning a strategy to address this problem, in particular in low and middle income countries. With contributions from leaders in the field, it provides an introduction to the achievements and issues of radiation therapy as a cancer treatment modality around the world. Dedicated chapters focus on the new radiotherapy technologies, proton beams, carbon ion, intraoperative radiotherapy, radiotherapy for children, treatment of HIV-AIDS malignancies, and costing and quality management issues.




Machine Learning in Radiation Oncology


Book Description

​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.




Tele-oncology


Book Description

This book explains how telemedicine can offer solutions capable of improving the care and survival rates of cancer patients and can also help patients to live a normal life in spite of their condition. Different fields of application – community, hospital and home based – are examined, and detailed attention is paid to the use of tele-oncology in rural/extreme rural settings and in developing countries. The impact of new technologies and the opportunities afforded by the social web are both discussed. The concluding chapters consider eLearning in relation to cancer care and assess the scope for education to improve prevention. No medical condition can shatter people’s lives as cancer does today and the need to develop strategies to reduce the disease burden and improve quality of life is paramount. Readers will find this new volume in Springer’s TELe Health series to be a rich source of information on the important contribution that can be made by telemedicine in achieving these goals.