Complexity and Approximation


Book Description

This book documents the state of the art in combinatorial optimization, presenting approximate solutions of virtually all relevant classes of NP-hard optimization problems. The wealth of problems, algorithms, results, and techniques make it an indispensible source of reference for professionals. The text smoothly integrates numerous illustrations, examples, and exercises.




Approximation and Complexity in Numerical Optimization


Book Description

There has been much recent progress in approximation algorithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. In discrete (or combinatorial) optimization many approaches have been developed recently that link the discrete universe to the continuous universe through geomet ric, analytic, and algebraic techniques. Such techniques include global optimization formulations, semidefinite programming, and spectral theory. As a result new ap proximate algorithms have been discovered and many new computational approaches have been developed. Similarly, for many continuous nonconvex optimization prob lems, new approximate algorithms have been developed based on semidefinite pro gramming and new randomization techniques. On the other hand, computational complexity, originating from the interactions between computer science and numeri cal optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty. The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable. The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions. A conference on Approximation and Complexity in Numerical Optimization: Con tinuous and Discrete Problems was held during February 28 to March 2, 1999 at the Center for Applied Optimization of the University of Florida.




Complexity In Numerical Optimization


Book Description

Computational complexity, originated from the interactions between computer science and numerical optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty.The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable.The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions.This book is a collection of articles on recent complexity developments in numerical optimization. The topics covered include complexity of approximation algorithms, new polynomial time algorithms for convex quadratic minimization, interior point algorithms, complexity issues regarding test generation of NP-hard problems, complexity of scheduling problems, min-max, fractional combinatorial optimization, fixed point computations and network flow problems.The collection of articles provide a broad spectrum of the direction in which research is going and help to elucidate the nature of computational complexity in optimization. The book will be a valuable source of information to faculty, students and researchers in numerical optimization and related areas.




Approximation and Optimization


Book Description

This book focuses on the development of approximation-related algorithms and their relevant applications. Individual contributions are written by leading experts and reflect emerging directions and connections in data approximation and optimization. Chapters discuss state of the art topics with highly relevant applications throughout science, engineering, technology and social sciences. Academics, researchers, data science practitioners, business analysts, social sciences investigators and graduate students will find the number of illustrations, applications, and examples provided useful. This volume is based on the conference Approximation and Optimization: Algorithms, Complexity, and Applications, which was held in the National and Kapodistrian University of Athens, Greece, June 29–30, 2017. The mix of survey and research content includes topics in approximations to discrete noisy data; binary sequences; design of networks and energy systems; fuzzy control; large scale optimization; noisy data; data-dependent approximation; networked control systems; machine learning ; optimal design; no free lunch theorem; non-linearly constrained optimization; spectroscopy.




Complexity in Numerical Optimization


Book Description

Computational complexity, originated from the interactions between computer science and numerical optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty.The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable.The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions.This book is a collection of articles on recent complexity developments in numerical optimization. The topics covered include complexity of approximation algorithms, new polynomial time algorithms for convex quadratic minimization, interior point algorithms, complexity issues regarding test generation of NP-hard problems, complexity of scheduling problems, min-max, fractional combinatorial optimization, fixed point computations and network flow problems.The collection of articles provide a broad spectrum of the direction in which research is going and help to elucidate the nature of computational complexity in optimization. The book will be a valuable source of information to faculty, students and researchers in numerical optimization and related areas.




Computational Complexity


Book Description

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.




Numerical Methods and Optimization


Book Description

For students in industrial and systems engineering (ISE) and operations research (OR) to understand optimization at an advanced level, they must first grasp the analysis of algorithms, computational complexity, and other concepts and modern developments in numerical methods. Satisfying this prerequisite, Numerical Methods and Optimization: An Intro




Randomization and Approximation Techniques in Computer Science


Book Description

Astronomy is the oldest and most fundamental of the natural sciences. From the early beginnings of civilization astronomers have attempted to explain not only what the Universe is and how it works, but also how it started, how it evolved to the present day, and how it will develop in the future. The author, a well-known astronomer himself, describes the evolution of astronomical ideas, briefly discussing most of the instrumental developments. Using numerous figures to elucidate the mechanisms involved, the book starts with the astronomical ideas of the Egyptian and Mesopotamian philosophers, moves on to the Greek period, and then to the golden age of astronomy, i.e. to Copernicus, Galileo, Kepler, and Newton, and ends with modern theories of cosmology. Written with undergraduate students in mind, this book gives a fascinating survey of astronomical thinking.




Numerical Optimization


Book Description

Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.




Approximation Algorithms and Semidefinite Programming


Book Description

Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.