Approximation and Modeling with B-Splines


Book Description

B-splines are fundamental to approximation and data fitting, geometric modeling, automated manufacturing, computer graphics, and numerical simulation. With an emphasis on key results and methods that are most widely used in practice, this textbook provides a unified introduction to the basic components of B-spline theory: approximation methods (mathematics), modeling techniques (engineering), and geometric algorithms (computer science). A supplemental Web site will provide a collection of problems, some with solutions, slides for use in lectures, and programs with demos.




Finite Element Methods with B-splines


Book Description

Finite Element Methods with B-Splines describes new weighted approximation techniques, combining the computational advantages of B-splines and standard finite elements. In particular, no grid generation is necessary, which eliminates a difficult and often time-consuming preprocessing step. The meshless methods are very efficient and yield highly accurate solutions with relatively few parameters. This is illustrated for typical boundary value problems in fluid flow, heat conduction, and elasticity. Topics discussed by the author include basic finite element theory, algorithms for B-splines, weighted bases, stability and error estimates, multigrid techniques, applications, and numerical examples.




Bézier and B-Spline Techniques


Book Description

This book provides a solid and uniform derivation of the various properties Bezier and B-spline representations have, and shows the beauty of the underlying rich mathematical structure. The book focuses on the core concepts of Computer Aided Geometric Design and provides a clear and illustrative presentation of the basic principles, as well as a treatment of advanced material including multivariate splines, some subdivision techniques and constructions of free form surfaces with arbitrary smoothness. The text is beautifully illustrated with many excellent figures to emphasize the geometric constructive approach of this book.




Multivariate Splines


Book Description

Subject of multivariate splines presented from an elementary point of view; includes many open problems.




Splines and PDEs: From Approximation Theory to Numerical Linear Algebra


Book Description

This book takes readers on a multi-perspective tour through state-of-the-art mathematical developments related to the numerical treatment of PDEs based on splines, and in particular isogeometric methods. A wide variety of research topics are covered, ranging from approximation theory to structured numerical linear algebra. More precisely, the book provides (i) a self-contained introduction to B-splines, with special focus on approximation and hierarchical refinement, (ii) a broad survey of numerical schemes for control problems based on B-splines and B-spline-type wavelets, (iii) an exhaustive description of methods for computing and analyzing the spectral distribution of discretization matrices, and (iv) a detailed overview of the mathematical and implementational aspects of isogeometric analysis. The text is the outcome of a C.I.M.E. summer school held in Cetraro (Italy), July 2017, featuring four prominent lecturers with different theoretical and application perspectives. The book may serve both as a reference and an entry point into further research.




An Introduction to Splines for Use in Computer Graphics and Geometric Modeling


Book Description

As the field of computer graphics develops, techniques for modeling complex curves and surfaces are increasingly important. A major technique is the use of parametric splines in which a curve is defined by piecing together a succession of curve segments, and surfaces are defined by stitching together a mosaic of surface patches. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling discusses the use of splines from the point of view of the computer scientist. Assuming only a background in beginning calculus, the authors present the material using many examples and illustrations with the goal of building the reader's intuition. Based on courses given at the University of California, Berkeley, and the University of Waterloo, as well as numerous ACM Siggraph tutorials, the book includes the most recent advances in computer-aided geometric modeling and design to make spline modeling techniques generally accessible to the computer graphics and geometric modeling communities.




Geometric Modeling with Splines


Book Description

Written by researchers who have helped found and shape the field, this book is a definitive introduction to geometric modeling. The authors present all of the necessary techniques for curve and surface representations in computer-aided modeling with a focus on how the techniques are used in design.







Modeling with Ambient B-Splines


Book Description

The present thesis introduces a new approach for the generation of CK-approximants of functions defined on closed submanifolds for arbitrary k ∈ N. In case a function on a surface resembles the three coordinates of a topologically equivalent surface in R3, we even obtain Ck-approximants of closed surfaces of arbitrary topology. The key idea of our method is a constant extension of the target function into the submanifold's ambient space. In case the reference submanifolds are embedded and Ck, the usage of standard tensor product B-splines for the approximation of the extended function is straightforward. We obtain a Ck-approximation of the target function by restricting the approximant to the reference submanifold. We illustrate our method by an easy example in R2 and verify its practicality by application-oriented examples in R3. The first treats the approximation of the geoid, an important reference magnitude within geodesy and geophysics. The second and third example treat the approximation of geometric models. The usage of B-splines not only guarantees full approximation power but also allows a canonical access to adaptive refinement strategies. We elaborate on two hierarchical techniques and successfully apply them to the introduced examples. Concerning the modeling of surfaces by the new approach, we derive numerically robust formulas for the determination of normal vectors and curvature information of a target surface which only need the spline approximant as well as the normal vectors and curvature information of the reference surface.




The NURBS Book


Book Description

Until recently B-spline curves and surfaces (NURBS) were principally of interest to the computer aided design community, where they have become the standard for curve and surface description. Today we are seeing expanded use of NURBS in modeling objects for the visual arts, including the film and entertainment industries, art, and sculpture. NURBS are now also being used for modeling scenes for virtual reality applications. These applications are expected to increase. Consequently, it is quite appropriate for The.N'URBS Book to be part of the Monographs in Visual Communication Series. B-spline curves and surfaces have been an enduring element throughout my pro fessional life. The first edition of Mathematical Elements for Computer Graphics, published in 1972, was the first computer aided design/interactive computer graph ics textbook to contain material on B-splines. That material was obtained through the good graces of Bill Gordon and Louie Knapp while they were at Syracuse University. A paper of mine, presented during the Summer of 1977 at a Society of Naval Architects and Marine Engineers meeting on computer aided ship surface design, was arguably the first to examine the use of B-spline curves for ship design. For many, B-splines, rational B-splines, and NURBS have been a bit mysterious.