Book Description
Provides a common setting for various methods of bounding the eigenvalues of a self-adjoint linear operator and emphasizes their relationships. A mapping principle is presented to connect many of the methods. The eigenvalue problems studied are linear, and linearization is shown to give important information about nonlinear problems. Linear vector spaces and their properties are used to uniformly describe the eigenvalue problems presented that involve matrices, ordinary or partial differential operators, and integro-differential operators.