Approximation of Vector Valued Functions


Book Description

This work deals with the many variations of the Stoneileierstrass Theorem for vector-valued functions and some of its applications. The book is largely self-contained. The amount of Functional Analysis required is minimal, except for Chapter 8. The book can be used by graduate students who have taken the usual first-year real and complex analysis courses.




Geometric Approximation Theory


Book Description

This monograph provides a comprehensive introduction to the classical geometric approximation theory, emphasizing important themes related to the theory including uniqueness, stability, and existence of elements of best approximation. It presents a number of fundamental results for both these and related problems, many of which appear for the first time in monograph form. The text also discusses the interrelations between main objects of geometric approximation theory, formulating a number of auxiliary problems for demonstration. Central ideas include the problems of existence and uniqueness of elements of best approximations as well as properties of sets including subspaces of polynomials and splines, classes of rational functions, and abstract subsets of normed linear spaces. The book begins with a brief introduction to geometric approximation theory, progressing through fundamental classical ideas and results as a basis for various approximation sets, suns, and Chebyshev systems. It concludes with a review of approximation by abstract sets and related problems, presenting novel results throughout the section. This text is suitable for both theoretical and applied viewpoints and especially researchers interested in advanced aspects of the field.




Spaces of Approximating Functions with Haar-like Conditions


Book Description

Tchebycheff (or Haar) and weak Tchebycheff spaces play a central role when considering problems of best approximation from finite dimensional spaces. The aim of this book is to introduce Haar-like spaces, which are Haar and weak Tchebycheff spaces under special conditions. It studies topics of subclasses of Haar-like spaces, that is, classes of Tchebycheff or weak Tchebycheff spaces, spaces of vector-valued monotone increasing or convex functions and spaces of step functions. The notion of Haar-like spaces provides a general point of view which includes the theories of approximation from the above spaces. The contents are largely new. Graduate students and researchers in approximation theory will be able to read this book with only basic knowledge of analysis, functional analysis and linear algebra.







Approximation Of Set-valued Functions: Adaptation Of Classical Approximation Operators


Book Description

This book is aimed at the approximation of set-valued functions with compact sets in an Euclidean space as values. The interest in set-valued functions is rather new. Such functions arise in various modern areas such as control theory, dynamical systems and optimization. The authors' motivation also comes from the newer field of geometric modeling, in particular from the problem of reconstruction of 3D objects from 2D cross-sections. This is reflected in the focus of this book, which is the approximation of set-valued functions with general (not necessarily convex) sets as values, while previous results on this topic are mainly confined to the convex case. The approach taken in this book is to adapt classical approximation operators and to provide error estimates in terms of the regularity properties of the approximated set-valued functions. Specialized results are given for functions with 1D sets as values.




Approximation of Functions: Theory and Numerical Methods


Book Description

for example, the so-called Lp approximation, the Bernstein approxima tion problem (approximation on the real line by certain entire functions), and the highly interesting studies of J. L. WALSH on approximation in the complex plane. I would like to extend sincere thanks to Professor L. COLLATZ for his many encouragements for the writing of this book. Thanks are equally due to Springer-Verlag for their ready agreement to my wishes, and for the excellent and competent composition of the book. In addition, I would like to thank Dr. W. KRABS, Dr. A. -G. MEYER and D. SCHWEDT for their very careful reading of the manuscript. Hamburg, March 1964 GUNTER MEINARDUS Preface to the English Edition This English edition was translated by Dr. LARRY SCHUMAKER, Mathematics Research Center, United States Army, The University of Wisconsin, Madison, from a supplemented version of the German edition. Apart from a number of minor additions and corrections and a few new proofs (e. g. , the new proof of JACKSON'S Theorem), it differs in detail from the first edition by the inclusion of a discussion of new work on comparison theorems in the case of so-called regular Haar systems (§ 6) and on Segment Approximation (§ 11). I want to thank the many readers who provided comments and helpful suggestions. My special thanks are due to the translator, to Springer-Verlag for their ready compliance with all my wishes, to Mr.




Approximation Theory Viii - Volume 1: Approximation And Interpolation


Book Description

This is the collection of the refereed and edited papers presented at the 8th Texas International Conference on Approximation Theory. It is interdisciplinary in nature and consists of two volumes. The central theme of Vol. I is the core of approximation theory. It includes such important areas as qualitative approximations, interpolation theory, rational approximations, radial-basis functions, and splines. The second volume focuses on topics related to wavelet analysis, including multiresolution and multi-level approximation, subdivision schemes in CAGD, and applications.




Vector-valued Laplace Transforms and Cauchy Problems


Book Description

Linear evolution equations in Banach spaces have seen important developments in the last two decades. This is due to the many different applications in the theory of partial differential equations, probability theory, mathematical physics, and other areas, and also to the development of new techniques. One important technique is given by the Laplace transform. It played an important role in the early development of semigroup theory, as can be seen in the pioneering monograph by Rille and Phillips [HP57]. But many new results and concepts have come from Laplace transform techniques in the last 15 years. In contrast to the classical theory, one particular feature of this method is that functions with values in a Banach space have to be considered. The aim of this book is to present the theory of linear evolution equations in a systematic way by using the methods of vector-valued Laplace transforms. It is simple to describe the basic idea relating these two subjects. Let A be a closed linear operator on a Banach space X. The Cauchy problern defined by A is the initial value problern (t 2 0), (CP) {u'(t) = Au(t) u(O) = x, where x E X is a given initial value. If u is an exponentially bounded, continuous function, then we may consider the Laplace transform 00 u(>. ) = 1 e-). . tu(t) dt of u for large real>. .




Model Reduction and Approximation


Book Description

Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.




Fundamentals of Approximation Theory


Book Description

The field of approximation theory has become so vast that it intersects with every other branch of analysis and plays an increasingly important role in applications in the applied sciences and engineering. Fundamentals of Approximation Theory presents a systematic, in-depth treatment of some basic topics in approximation theory designed to emphasize the rich connections of the subject with other areas of study. With an approach that moves smoothly from the very concrete to more and more abstract levels, this text provides an outstanding blend of classical and abstract topics. The first five chapters present the core of information that readers need to begin research in this domain. The final three chapters the authors devote to special topics-splined functions, orthogonal polynomials, and best approximation in normed linear spaces- that illustrate how the core material applies in other contexts and expose readers to the use of complex analytic methods in approximation theory. Each chapter contains problems of varying difficulty, including some drawn from contemporary research. Perfect for an introductory graduate-level class, Fundamentals of Approximation Theory also contains enough advanced material to serve more specialized courses at the doctoral level and to interest scientists and engineers.