Approximation Theory and Harmonic Analysis on Spheres and Balls


Book Description

This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography. This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.




Approximation Theory XIV: San Antonio 2013


Book Description

These proceedings were prepared in connection with the 14th International Conference on Approximation Theory, which was held April 7-10, 2013 in San Antonio, Texas. The conference was the fourteenth in a series of meetings in Approximation Theory held at various locations in the United States. The included invited and contributed papers cover diverse areas of approximation theory with a special emphasis on the most current and active areas such as compressed sensing, isogeometric analysis, anisotropic spaces, radial basis functions and splines. Classical and abstract approximation is also included. The book will be of interest to mathematicians, engineers\ and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis and related application areas.




Spectral Methods Using Multivariate Polynomials On The Unit Ball


Book Description

Spectral Methods Using Multivariate Polynomials on the Unit Ball is a research level text on a numerical method for the solution of partial differential equations. The authors introduce, illustrate with examples, and analyze 'spectral methods' that are based on multivariate polynomial approximations. The method presented is an alternative to finite element and difference methods for regions that are diffeomorphic to the unit disk, in two dimensions, and the unit ball, in three dimensions. The speed of convergence of spectral methods is usually much higher than that of finite element or finite difference methods. Features Introduces the use of multivariate polynomials for the construction and analysis of spectral methods for linear and nonlinear boundary value problems Suitable for researchers and students in numerical analysis of PDEs, along with anyone interested in applying this method to a particular physical problem One of the few texts to address this area using multivariate orthogonal polynomials, rather than tensor products of univariate polynomials.




Geometric and Harmonic Analysis on Homogeneous Spaces and Applications


Book Description

This book collects a series of important works on noncommutative harmonic analysis on homogeneous spaces and related topics. All the authors participated in the 6th Tunisian-Japanese conference "Geometric and Harmonic Analysis on homogeneous spaces and Applications" held at Djerba Island in Tunisia during the period of December 16-19, 2019. The aim of this conference and the five preceding Tunisian-Japanese meetings was to keep up with the active development of representation theory interrelated with various other mathematical fields, such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations, and mathematical physics. The present volume is dedicated to the memory of Takaaki Nomura, who organized the series of Tunisian-Japanese conferences with great effort and enthusiasm. The book is a valuable resource for researchers and students working in various areas of analysis, geometry, and algebra in connection with representation theory.




Clifford Analysis and Related Topics


Book Description

This book, intended to commemorate the work of Paul Dirac, highlights new developments in the main directions of Clifford analysis. Just as complex analysis is based on the algebra of the complex numbers, Clifford analysis is based on the geometric Clifford algebras. Many methods and theorems from complex analysis generalize to higher dimensions in various ways. However, many new features emerge in the process, and much of this work is still in its infancy. Some of the leading mathematicians working in this field have contributed to this book in conjunction with “Clifford Analysis and Related Topics: a conference in honor of Paul A.M. Dirac,” which was held at Florida State University, Tallahassee, on December 15-17, 2014. The content reflects talks given at the conference, as well as contributions from mathematicians who were invited but were unable to attend. Hence much of the mathematics presented here is not only highly topical, but also cannot be found elsewhere in print. Given its scope, the book will be of interest to mathematicians and physicists working in these areas, as well as students seeking to catch up on the latest developments.




Analysis on h-Harmonics and Dunkl Transforms


Book Description

​This book provides an introduction to h-harmonics and Dunkl transforms. These are extensions of the ordinary spherical harmonics and Fourier transforms, in which the usual Lebesgue measure is replaced by a reflection-invariant weighted measure. The authors’ focus is on the analysis side of both h-harmonics and Dunkl transforms. Graduate students and researchers working in approximation theory, harmonic analysis, and functional analysis will benefit from this book.




Frames and Other Bases in Abstract and Function Spaces


Book Description

The first of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume I is organized around the theme of frames and other bases in abstract and function spaces, covering topics such as: The advanced development of frames, including Sigma-Delta quantization for fusion frames, localization of frames, and frame conditioning, as well as applications to distributed sensor networks, Galerkin-like representation of operators, scaling on graphs, and dynamical sampling. A systematic approach to shearlets with applications to wavefront sets and function spaces. Prolate and generalized prolate functions, spherical Gauss-Laguerre basis functions, and radial basis functions. Kernel methods, wavelets, and frames on compact and non-compact manifolds.




Wavelet Analysis on the Sphere


Book Description

The goal of this monograph is to develop the theory of wavelet harmonic analysis on the sphere. By starting with orthogonal polynomials and functional Hilbert spaces on the sphere, the foundations are laid for the study of spherical harmonics such as zonal functions. The book also discusses the construction of wavelet bases using special functions, especially Bessel, Hermite, Tchebychev, and Gegenbauer polynomials.




Introduction to Radon Transforms


Book Description

A comprehensive introduction to basic operators of integral geometry and the relevant harmonic analysis for students and researchers.




Lebesgue Points and Summability of Higher Dimensional Fourier Series


Book Description

This monograph presents the summability of higher dimensional Fourier series, and generalizes the concept of Lebesgue points. Focusing on Fejér and Cesàro summability, as well as theta-summation, readers will become more familiar with a wide variety of summability methods. Within the theory of higher dimensional summability of Fourier series, the book also provides a much-needed simple proof of Lebesgue’s theorem, filling a gap in the literature. Recent results and real-world applications are highlighted as well, making this a timely resource. The book is structured into four chapters, prioritizing clarity throughout. Chapter One covers basic results from the one-dimensional Fourier series, and offers a clear proof of the Lebesgue theorem. In Chapter Two, convergence and boundedness results for the lq-summability are presented. The restricted and unrestricted rectangular summability are provided in Chapter Three, as well as the sufficient and necessary condition for the norm convergence of the rectangular theta-means. Chapter Four then introduces six types of Lebesgue points for higher dimensional functions. Lebesgue Points and Summability of Higher Dimensional Fourier Series will appeal to researchers working in mathematical analysis, particularly those interested in Fourier and harmonic analysis. Researchers in applied fields will also find this useful.