Arctic Offshore Engineering Short Course


Book Description

Course materials for an Arctic Offshore Engineering Short Course emphasizing the development of an engineering knowledge of wave and ice mechanics leading to the state of the art in determining arctic offshore environmental forcing functions. The forcing functions are used in designing and predicting the integrity of arctic offshore structures. Forces are applied to the design of a monopod (vertical cylinder), a submarine pipeline (horizontal cylinder) and a conical structure (large body).




Arctic Offshore Engineering


Book Description

There is an increasing need to construct engineering structures in the Arctic sea. The requirement is principally generated by the oil and gas industry, because of the substantial reserves that are known to existing offshore in the Beaufort Sea, the Caspian Sea, the Barents Sea, the Pacific Ocean off the cost of Sakhalin, the Canadian Arctic, and almost certainly elsewhere. Structures have to withstand the severe environmental forces generated by sea ice, a subject that is developing rapidly but is still far from completely understood. Underwater pipelines have to be safe against ice gouging and strudel scour, but also have to be constructed safely and economically. The social and human environment has to be understood and respected. This important book intentionally takes a broad view, and vividly accounts for the many and often subtle interactions between the different factors. It is illustrated by case studies of actual projects.




Fundamentals of Offshore Engineering


Book Description

Fundamentals of Offshore Engineering addresses the basics of design for offshore oil and gas production systems and examines the health, safety, and environmental (HSE) aspects in the oil and gas industry with emphasis toward safety measures in design and operations. It also covers fundamental issues of crude oil and natural gas exploration and extraction and also includes coverage of seismic surveys and green energy systems. Details of offshore platforms, describing the types, historical development, basics of analysis and design, environmental loads, and potential hazards are also provided. The book serves as a useful resource for universities that teach offshore engineering to senior undergraduate and graduate students as well as a guide for practicing engineers. Includes coverage of wave loads, wind loads, ice loads, and fire loads on structures. Discusses offshore pipelines and subsea engineering to help readers understand the fundamentals of petroleum production and related pipeline installation.







Glaciological Data


Book Description




Offshore Structural Engineering


Book Description

Successfully estimate risk and reliability, and produce innovative, yet reliable designs using the approaches outlined in Offshore Structural Engineering: Reliability and Risk Assessment. A hands-on guide for practicing professionals, this book covers the reliability of offshore structures with an emphasis on the safety and reliability of offshore facilities during analysis, design, inspection, and planning. Since risk assessment and reliability estimates are often based on probability, the author utilizes concepts of probability and statistical analysis to address the risks and uncertainties involved in design. He explains the concepts with clear illustrations and tutorials, provides a chapter on probability theory, and covers various stages of the process that include data collection, analysis, design and construction, and commissioning. In addition, the author discusses advances in geometric structural forms for deep-water oil exploration, the rational treatment of uncertainties in structural engineering, and the safety and serviceability of civil engineering and other offshore structures. An invaluable guide to innovative and reliable structural design, this book: Defines the structural reliability theory Explains the reliability analysis of structures Examines the reliability of offshore structures Describes the probabilistic distribution for important loading variables Includes methods of reliability analysis Addresses risk assessment and more Offshore Structural Engineering: Reliability and Risk Assessment provides an in-depth analysis of risk analysis and assessment and highlights important aspects of offshore structural reliability. The book serves as a practical reference to engineers and students involved in naval architecture, ocean engineering, civil/structural, and petroleum engineering.







Design Aids of Offshore Structures Under Special Environmental Loads including Fire Resistance


Book Description

This book provides detailed analysis methods and design guidelines for fire resistance, a vital consideration for offshore processing and production platforms. Recent advancements in the selection of various geometric structural forms for deep-water oil exploration and production require a detailed understanding of the design of offshore structures under special loads. Focusing on a relatively new aspect of offshore engineering, the book offers essential teaching material, illustrating and explaining the concepts discussed through many tutorials. It creates a basis for designing new courses for students of ocean engineering and naval architecture, civil engineering, and applied mechanics at both undergraduate and graduate levels. As such, its content can be used for self-study or as a text in structured courses and professional development programs.




Advanced Marine Structures


Book Description

Due in part to a growing demand for offshore oil and gas exploration, the development of marine structures that initially started onshore is now moving into deeper offshore areas. Designers are discovering a need to revisit basic concepts as they anticipate the response behavior of marine structures to increased water depths. Providing a sim




Ocean Structures


Book Description

This book addresses the concepts of material selection and analysis, choice of structural form, construction methods, environmental loads, health monitoring, non-destructive testing, and repair methodologies and rehabilitation of ocean structures. It examines various types of ocean and offshore structures, including drilling platforms, processing platforms and vessels, towers, sea walls and surge barriers, and more. It also explores the use of MEMS in offshore structures, with regard to military and oil exploration applications. Full-color figures as well as numerous solved problems and examples are included to help readers understand the applied concepts.