Aromaticity and Other Conjugation Effects


Book Description

The authors provide an excellent overview of conjugation effects in organic chemistry within and between Pi systems. Besides various aspects of aromaticity one finds detailed discussions of homo-, spiroand hyperconjugation as well as effects of through-space and throughbond interactions. These effects are presented on the basis of experimental results and are analyzed by the use of qualitative arguments of perturbation theory and from a comparison with results from high level ab initio calculations. This book is a must-have for bachelor students from the second year on, master and PhD students of chemistry. Also students in science such as physics, biology and medicine will benefit from the concepts described in the book. Furthermore, chemists in research and development will be grateful to find here an overview of conjugation effects allowing to understand the structures, the dynamics and the reactivity of molecules.




Aromaticity


Book Description

Evaluating the aromaticity of a molecular system and the influence of this concept on its properties is a crucial step in the development of novel aromatic systems. Modern computational methods can provide researchers with a high level of insight into such aromaticity, but identifying the most appropriate method for assessing a specific system can prove difficult. Aromaticity: Modern Computational Methods and Applications reviews the latest state-of-the-art computational methods in this field and discusses their applicability for evaluating the aromaticity of a system. In addition to covering aromaticity for typical organic molecules, this volume also explores systems possessing transition metals in their structures, macrocycles and even transition structures. The influence of the aromaticity on the properties of these species (including the structure, magnetic properties and reactivity) is highlighted, along with potential applications in fields including materials science and medicinal chemistry. Finally, the controversial and fuzzy nature of aromaticity as a concept is discussed, providing the basis for an updated and more comprehensive definition of this concept. Drawing on the knowledge of an international team of experts, Aromaticity: Modern Computational Methods and Applications is a unique guide for anyone researching, studying or applying principles of aromaticity in their work, from computational and organic chemists to pharmaceutical and materials scientists. - Reviews a range of computational methods to assess the aromatic nature of different compounds, helping readers select the most useful tool for the system they are studying - Presents a complete guide to the key concepts and fundamental principles of aromaticity - Provides guidance on identifying which variables should be modified to tune the properties of an aromatic system for different potential applications




Applied Theoretical Organic Chemistry


Book Description

This book provides state-of-the-art information on how studies in applied theoretical organic chemistry are conducted. It highlights the many approaches and tools available to those interested in using computational chemistry to predict and rationalize structures and reactivity of organic molecules. Chapters not only describe theoretical techniques in detail, but also describe recent applications and offer practical advice.Authored by many of the world leaders in the field of applied theoretical chemistry, this book is perfect for both practitioners of computational chemistry and synthetic and mechanistic organic chemists curious about applying computational techniques to their research.Related Link(s)




Modern Nucleophilic Aromatic Substitution


Book Description

This book provides a comprehensive overview of nucleophilic aromatic substitutions, focusing on the mechanistic and synthetic features that govern these reactions. The first chapter presents a detailed mechanistic analysis of the factors determining the feasibility of SNAr substitutions, providing decisive information to predict regioselectivity of many reactions and to define the conditions for concerted SNAr processes. Reflecting the key role played by these species as intermediates in most SNAr reactions, chapter 2 then discusses the chemistry of anionic sigma-complexes. Chapter 3 describes the concept of superelectrophilicity in SNAr substitutions, as it has recently emerged from the reactivity of strongly electron-deficient aromatic and heteroaromatic structures. The numerous synthetic applications are considered in depth in the chapters 4 and 5 that follow on intermolecular and intramolecular nucleophilic aromatic substitutions. Then, chapter 6 focuses on substitutions proceeding formally through displacement of a hydride ion, a hot topic in the field. The final chapter brings together concise yet comprehensive discussions surrounding SNAr photosubstitutions, radical substitutions, and ANRORC substitutions. Authored by a highly respected chemist who has contributed greatly to the field over the past two decades, this is a valuable information source for all organic chemists working in academia or the pharmaceutical and agrochemical industries.




Stereoelectronic Effects


Book Description

Stereoelectronic Effects illustrates the utility of stereoelectronic concepts using structure and reactivity of organic molecules An advanced textbook that provides an up-to-date overview of the field, starting from the fundamental principles Presents a large selection of modern examples of stereoelectronic effects in organic reactivity Shows practical applications of stereoelectronic effects in asymmetric catalysis, photochemical processes, bioorganic chemistry and biochemistry, inorganic and organometallic reactivity, supramolecular chemistry and materials science




Organic Nanochemistry


Book Description

ORGANIC NANOCHEMISTRY How-to guide for entry-level practitioners to quickly learn the cutting-edge research concepts and methodologies of modern organic nanochemistry Organic Nanochemistry describes the fundamentals of organic nanochemistry research, encompassing modern synthetic reactions, supramolecular strategies, nanostructure and property characterization techniques, and state-of-the-art data analysis and processing methods, along with synthetic chemistry as applied to organic nanomaterials and molecular devices. Accompanying each of these principles are case studies (from basic design to detailed experimental implementation) to help the reader fully comprehend the concepts and methods involved. Various theories suitable for nanoscale simulations, including quantum mechanics, semi-empirical quantum mechanics, and molecular dynamics theories, are discussed at an introductory level. Computational examples are provided, allowing interested readers to grasp essential modelling techniques for better understanding of organic nanochemistry. The content is paired with online supplementary material that includes instructional materials and guides to using common scientific software for computational modelling and simulations. Written by a highly qualified professor, Organic Nanochemistry includes discussion on: Key concepts and theories of organic chemistry, which are essential to understand the fundamental properties of organic molecular and supramolecular systems Useful synthetic methodologies for the synthesis and functionalization of organic nanomaterials, and the chemistry and application of exotic carbon nanomaterials Supramolecular aspects in organic nanochemistry, especially the well-developed disciplines of host-guest chemistry and organic self-assembly chemistry Construction and testing of molecular devices and molecular machines and state-of-the-art computational modelling methods for properties of nanoscale organic systems Guiding the reader on a journey from familiar chemical concepts and principles to cutting-edge research of nano-science and technology, Organic Nanochemistry serves as an excellent textbook learning resource for advanced and graduate students, as well as a self-study guide or how-to reference for practicing chemists.




Stereochemistry and Organic Reactions


Book Description

Stereochemistry and Organic Reactions: Conformation, Configuration, Stereoelectronic Effects and Asymmetric Synthesis provides coverage on the stereochemistry of reactions of all mechanistic types, ranging from ionic, pericyclic and transition metal-catalyzed to radical and photochemical. Chapters cover acyclic molecules, cyclic molecules, the stereochemistry of organic reactions, the perturbation molecular orbital theory for the origin of stereoelectronic effects, and an introduction to the principles of stereoselectivity and hierarchical levels of asymmetric synthesis. Each chapter includes problems that reinforce main themes, making it valuable to students, teachers and researchers working in organic, biological and medicinal chemistry, as well as biologists, pharmacologists, polymer chemists and chemists. - Presents a holistic and unified approach to stereochemical understanding and predictions, covering reactions of all mechanistic classes - Includes two background chapters on perturbation theory and stereoselective principles, along with asymmetric designs - Features novel rules and mnemonics to delineate product stereochemistry - Includes up-to-date coverage with over 1300 selective references




March's Advanced Organic Chemistry


Book Description

The completely revised and updated, definitive resource for students and professionals in organic chemistry The revised and updated 8th edition of March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure explains the theories of organic chemistry with examples and reactions. This book is the most comprehensive resource about organic chemistry available. Readers are guided on the planning and execution of multi-step synthetic reactions, with detailed descriptions of all the reactions The opening chapters of March's Advanced Organic Chemistry, 8th Edition deal with the structure of organic compounds and discuss important organic chemistry bonds, fundamental principles of conformation, and stereochemistry of organic molecules, and reactive intermediates in organic chemistry. Further coverage concerns general principles of mechanism in organic chemistry, including acids and bases, photochemistry, sonochemistry and microwave irradiation. The relationship between structure and reactivity is also covered. The final chapters cover the nature and scope of organic reactions and their mechanisms. This edition: Provides revised examples and citations that reflect advances in areas of organic chemistry published between 2011 and 2017 Includes appendices on the literature of organic chemistry and the classification of reactions according to the compounds prepared Instructs the reader on preparing and conducting multi-step synthetic reactions, and provides complete descriptions of each reaction The 8th edition of March's Advanced Organic Chemistry proves once again that it is a must-have desktop reference and textbook for every student and professional working in organic chemistry or related fields. Winner of the Textbook & Acadmic Authors Association 2021 McGuffey Longevity Award.




Orbital Interactions in Chemistry


Book Description

Explains the underlying structure that unites all disciplinesin chemistry Now in its second edition, this book explores organic,organometallic, inorganic, solid state, and materials chemistry,demonstrating how common molecular orbital situations arisethroughout the whole chemical spectrum. The authors explore therelationships that enable readers to grasp the theory thatunderlies and connects traditional fields of study withinchemistry, thereby providing a conceptual framework with which tothink about chemical structure and reactivity problems. Orbital Interactions in Chemistry begins by developingmodels and reviewing molecular orbital theory. Next, the bookexplores orbitals in the organic-main group as well as in solids.Lastly, the book examines orbital interaction patterns that occurin inorganic-organometallic fields as well as clusterchemistry, surface chemistry, and magnetism in solids. This Second Edition has been thoroughly revised andupdated with new discoveries and computational tools since thepublication of the first edition more than twenty-five years ago.Among the new content, readers will find: * Two new chapters dedicated to surface science and magneticproperties * Additional examples of quantum calculations, focusing oninorganic and organometallic chemistry * Expanded treatment of group theory * New results from photoelectron spectroscopy Each section ends with a set of problems, enabling readers totest their grasp of new concepts as they progress through the text.Solutions are available on the book's ftp site. Orbital Interactions in Chemistry is written for bothresearchers and students in organic, inorganic, solid state,materials, and computational chemistry. All readers will discoverthe underlying structure that unites all disciplines inchemistry.




Encyclopedia of Physical Organic Chemistry, 6 Volume Set


Book Description

Winner of 2018 PROSE Award for MULTIVOLUME REFERENCE/SCIENCE This encyclopedia offers a comprehensive and easy reference to physical organic chemistry (POC) methodology and techniques. It puts POC, a classical and fundamental discipline of chemistry, into the context of modern and dynamic fields like biochemical processes, materials science, and molecular electronics. Covers basic terms and theories into organic reactions and mechanisms, molecular designs and syntheses, tools and experimental techniques, and applications and future directions Includes coverage of green chemistry and polymerization reactions Reviews different strategies for molecular design and synthesis of functional molecules Discusses computational methods, software packages, and more than 34 kinds of spectroscopies and techniques for studying structures and mechanisms Explores applications in areas from biology to materials science The Encyclopedia of Physical Organic Chemistry has won the 2018 PROSE Award for MULTIVOLUME REFERENCE/SCIENCE. The PROSE Awards recognize the best books, journals and digital content produced by professional and scholarly publishers. Submissions are reviewed by a panel of 18 judges that includes editors, academics, publishers and research librarians who evaluate each work for its contribution to professional and scholarly publishing. You can find out more at: proseawards.com Also available as an online edition for your library, for more details visit Wiley Online Library