Photovoltaic Systems


Book Description

This book provides comprehensive insight into the fault detection techniques implemented for photovoltaic (PV) panels. It includes studies related to predictive maintenance needed to improve the performance of the solar PV systems using Artificial Intelligence (AI) techniques. The readers gain knowledge on the fault identification algorithm and the significance of all such algorithms in real-time power system applications. Gives detailed overview of fundamental concepts of fault diagnosis algorithm for solar PV system Explains AC and DC side of the solar PV system-based electricity generation with real-time examples Covers effective extraction of the energy from solar radiation Illustrates artificial intelligence techniques for detecting the faults occurring in the solar PV system Includes MATLAB® based simulations and results on fault diagnosis including case studies This book is aimed at researchers, professionals and graduate students in electrical engineering, artificial intelligence, control algorithms, energy engineering, photovoltaic systems, industrial electronics.




A Practical Guide for Advanced Methods in Solar Photovoltaic Systems


Book Description

The present book focuses on recent advances methods and applications in photovoltaic (PV) systems. The book is divided into two parts: the first part deals with some theoretical, simulation and experiments on solar cells, including efficiency improvement, new materials and behavior performances. While the second part of the book devoted mainly on the application of advanced methods in PV systems, including advanced control, FPGA implementation, output power forecasting based artificial intelligence technique (AI), high PV penetration, reconfigurable PV architectures and fault detection and diagnosis based AI. The authors of the book trying to show to readers more details about some theoretical methods and applications in solar cells and PV systems (eg. advanced algorithms for control, optimization, power forecasting, monitoring and fault diagnosis methods). The applications are mainly carried out in different laboratories and location around the world as projects (Algeria, KSA, Turkey, Morocco, Italy and France). The book will be addressed to scientists, academics, researchers and PhD students working in this topic. The book will help readers to understand some applications including control, forecasting, monitoring, fault diagnosis of photovoltaic plants, as well as in solar cells such as behavior performances and efficiency improvement. It could be also be used as a reference and help industry sectors interested by prototype development.




Introduction to AI Techniques for Renewable Energy System


Book Description

Introduction to AI techniques for Renewable Energy System Artificial Intelligence (AI) techniques play an essential role in modeling, analysis, and prediction of the performance and control of renewable energy. The algorithms used to model, control, or predict performances of the energy systems are complicated, involving differential equations, enormous computing power, and time requirements. Instead of complex rules and mathematical routines, AI techniques can learn critical information patterns within a multidimensional information domain. Design, control, and operation of renewable energy systems require a long-term series of meteorological data such as solar radiation, temperature, or wind data. Such long-term measurements are often non-existent for most of the interest locations or, wherever they are available, they suffer from several shortcomings, like inferior quality of data, and in-sufficient long series. The book focuses on AI techniques to overcome these problems. It summarizes commonly used AI methodologies in renewal energy, with a particular emphasis on neural networks, fuzzy logic, and genetic algorithms. It outlines selected AI applications for renewable energy. In particular, it discusses methods using the AI approach for prediction and modeling of solar radiation, seizing, performances, and controls of the solar photovoltaic (PV) systems. Features Focuses on a significant area of concern to develop a foundation for the implementation of renewable energy system with intelligent techniques Showcases how researchers working on renewable energy systems can correlate their work with intelligent and machine learning approaches Highlights international standards for intelligent renewable energy systems design, reliability, and maintenance Provides insights on solar cell, biofuels, wind, and other renewable energy systems design and characterization, including the equipment for smart energy systems This book, which includes real-life examples, is aimed at undergraduate and graduate students and academicians studying AI techniques used in renewal energy systems.




Artificial Intelligence for Solar Photovoltaic Systems


Book Description

This book provides a clear explanation of how to apply artificial intelligence (AI) to solve the challenges in solar photovoltaic technology. It introduces readers to new AI-based approaches and technologies that help manage and operate solar photovoltaic systems effectively. It also motivates readers to find new AI-based solutions for these challenges by providing a comprehensive collection of findings on AI techniques. It covers important topics including solar irradiance variability, solar power forecasting, solar irradiance forecasting, maximum power point tracking, hybrid algorithms, swarm optimization, evolutionary optimization, sensor-based sun- tracking systems, single-axis and dual-axis sun-tracking systems, smart metering, frequency regulation using AI, emerging multilevel inverter topologies, and voltage and reactive power control using AI. This book is useful for senior undergraduate students, graduate students, and academic researchers in areas such as electrical engineering, electronics and communication engineering, computer science, and renewable energy.




Applications of AI and IOT in Renewable Energy


Book Description

Applications of AI and IOT in Renewable Energy provides a future vision of unexplored areas and applications for Artificial Intelligence and Internet of Things in sustainable energy systems. The ideas presented in this book are backed up by original, unpublished technical research results covering topics like smart solar energy systems, intelligent dc motors and energy efficiency study of electric vehicles. In all these areas and more, applications of artificial intelligence methods, including artificial neural networks, genetic algorithms, fuzzy logic and a combination of the above in hybrid systems are included. This book is designed to assist with developing low cost, smart and efficient solutions for renewable energy systems and is intended for researchers, academics and industrial communities engaged in the study and performance prediction of renewable energy systems. - Includes future applications of AI and IOT in renewable energy - Based on case studies to give each chapter real-life context - Provides advances in renewable energy using AI and IOT with technical detail and data




Solar Photovoltaic Power Plants


Book Description

This book discusses control and optimization techniques in the broadest sense, covering new theoretical results and the applications of newly developed methods for PV systems. Going beyond classical control techniques, it promotes the use of more efficient control and optimization strategies based on linearized models and purely continuous (or discrete) models. These new strategies not only enhance the performance of the PV systems, but also decrease the cost per kilowatt-hour generated.




Renewable Energy for Smart and Sustainable Cities


Book Description

This book features cutting-edge research presented at the second international conference on Artificial Intelligence in Renewable Energetic Systems, IC-AIRES2018, held on 24–26 November 2018, at the High School of Commerce, ESC-Koléa in Tipaza, Algeria. Today, the fundamental challenge of integrating renewable energies into the design of smart cities is more relevant than ever. While based on the advent of big data and the use of information and communication technologies, smart cities must now respond to cross-cutting issues involving urban development, energy and environmental constraints; further, these cities must also explore how they can integrate more sustainable energies. Sustainable energies are a major determinant of smart cities’ longevity. From an environmental and technological standpoint, these energies offer an optimal power supply to the electric network while creating significantly less pollution. This requires flexibility, i.e., the availability of supply and demand. The end goal of any smart city is to improve the quality of life for all citizens (both in the city and in the countryside) in a way that is sustainable and respectful of the environment. This book encourages the reader to engage in the preservation of our environment, every moment, every day, so as to help build a clean and healthy future, and to think of the future generations who will one day inherit our planet. Further, it equips those whose work involves energy systems and those engaged in modelling artificial intelligence to combine their expertise for the benefit of the scientific community and humanity as a whole.




Advanced Technologies for Solar Photovoltaics Energy Systems


Book Description

This book presents a detailed description, analysis, comparison of the latest research and developments in photovoltaic energy. Discussing everything from semiconductors to system integration, and applying various advanced technologies to stand alone and electric utility interfaced in normal and abnormal operating conditions of PV systems, this book provides a thorough introduction to the topic. This book brings together research from around the world, covering the use of technologies such as embedded systems, the Internet of things and blockchain technologies for PV systems for different applications including controllers, solar trackers and cooling systems. The book is of interest to electronic and mechanical engineers, researchers and students in the field of photovoltaics.




Artificial Intelligence for Renewable Energy Systems


Book Description

ARTIFICIAL INTELLIGENCE FOR RENEWABLE ENERGY SYSTEMS Renewable energy systems, including solar, wind, biodiesel, hybrid energy, and other relevant types, have numerous advantages compared to their conventional counterparts. This book presents the application of machine learning and deep learning techniques for renewable energy system modeling, forecasting, and optimization for efficient system design. Due to the importance of renewable energy in today’s world, this book was designed to enhance the reader’s knowledge based on current developments in the field. For instance, the extraction and selection of machine learning algorithms for renewable energy systems, forecasting of wind and solar radiation are featured in the book. Also highlighted are intelligent data, renewable energy informatics systems based on supervisory control and data acquisition (SCADA); and intelligent condition monitoring of solar and wind energy systems. Moreover, an AI-based system for real-time decision-making for renewable energy systems is presented; and also demonstrated is the prediction of energy consumption in green buildings using machine learning. The chapter authors also provide both experimental and real datasets with great potential in the renewable energy sector, which apply machine learning (ML) and deep learning (DL) algorithms that will be helpful for economic and environmental forecasting of the renewable energy business. Audience The primary target audience includes research scholars, industry engineers, and graduate students working in renewable energy, electrical engineering, machine learning, information & communication technology.




Intelligent Renewable Energy Systems


Book Description

INTELLIGENT RENEWABLE ENERGY SYSTEMS This collection of papers on artificial intelligence and other methods for improving renewable energy systems, written by industry experts, is a reflection of the state of the art, a must-have for engineers, maintenance personnel, students, and anyone else wanting to stay abreast with current energy systems concepts and technology. Renewable energy is one of the most important subjects being studied, researched, and advanced in today’s world. From a macro level, like the stabilization of the entire world’s economy, to the micro level, like how you are going to heat or cool your home tonight, energy, specifically renewable energy, is on the forefront of the discussion. This book illustrates modelling, simulation, design and control of renewable energy systems employed with recent artificial intelligence (AI) and optimization techniques for performance enhancement. Current renewable energy sources have less power conversion efficiency because of its intermittent and fluctuating behavior. Therefore, in this regard, the recent AI and optimization techniques are able to deal with data ambiguity, noise, imprecision, and nonlinear behavior of renewable energy sources more efficiently compared to classical soft computing techniques. This book provides an extensive analysis of recent state of the art AI and optimization techniques applied to green energy systems. Subsequently, researchers, industry persons, undergraduate and graduate students involved in green energy will greatly benefit from this comprehensive volume, a must-have for any library. Audience Engineers, scientists, managers, researchers, students, and other professionals working in the field of renewable energy.