Artificial Intelligence, Machine Learning, and Mental Health in Pandemics


Book Description

Artificial Intelligence, Machine Learning, and Mental Health in Pandemics: A Computational Approach provides a comprehensive guide for public health authorities, researchers and health professionals in psychological health. The book takes a unique approach by exploring how Artificial Intelligence (AI) and Machine Learning (ML) based solutions can assist with monitoring, detection and intervention for mental health at an early stage. Chapters include computational approaches, computational models, machine learning based anxiety and depression detection and artificial intelligence detection of mental health. With the increase in number of natural disasters and the ongoing pandemic, people are experiencing uncertainty, leading to fear, anxiety and depression, hence this is a timely resource on the latest updates in the field. - Examines the datasets and algorithms that can be used to detect mental disorders - Covers machine learning solutions that can help determine the precautionary measures of psychological health problems - Highlights innovative AI solutions and bi-statistics computation that can strengthen day-to-day medical procedures and decision-making




International Conference on Innovative Computing and Communications


Book Description

This book includes high-quality research papers presented at the Fourth International Conference on Innovative Computing and Communication (ICICC 2021), which is held at the Shaheed Sukhdev College of Business Studies, University of Delhi, Delhi, India, on February 20–21, 2021. Introducing the innovative works of scientists, professors, research scholars, students and industrial experts in the field of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research and the conversion of applied exploration into real-time applications.




Enabling Healthcare 4.0 for Pandemics


Book Description

ENABLING HEALTHCARE 4.0 for PANDEMICS The book explores the role and scope of AI, machine learning and other current technologies to handle pandemics. In this timely book, the editors explore the current state of practice in Healthcare 4.0 and provide a roadmap for harnessing artificial intelligence, machine learning, and Internet of Things, as well as other modern cognitive technologies, to aid in dealing with the various aspects of an emergency pandemic outbreak. There is a need to improvise healthcare systems with the intervention of modern computing and data management platforms to increase the reliability of human processes and life expectancy. There is an urgent need to come up with smart IoT-based systems which can aid in the detection, prevention and cure of these pandemics with more precision. There are a lot of challenges to overcome but this book proposes a new approach to organize the technological warfare for tackling future pandemics. In this book, the reader will find: State-of-the-art technological advancements in pandemic management; AI and ML-based identification and forecasting of pandemic spread; Smart IoT-based ecosystem for pandemic scenario. Audience The book will be used by researchers and practitioners in computer science, artificial intelligence, bioinformatics, data scientists, biomedical statisticians, as well as industry professionals in disaster and pandemic management.




Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data




Technologies, Artificial Intelligence and the Future of Learning Post-COVID-19


Book Description

This book aims to assess the experience of education during COVID-19 pandemic and explore the future of application of technologies and artificial intelligence in education. Education delivery requires the support of new technologies such as artificial intelligence (AI), the Internet of Things (IoT), big data, and machine learning to fight and aspire to new diseases. The academic community and those interested in education agree that education after the corona pandemic will not be the same as before. The book also questions the role of accreditation bodies (e.g., AACSB, etc.) to ensure the effectiveness and efficiency of technology tools in achieving distinguished education in times of crisis.




Artificial Intelligence for COVID-19


Book Description

This book presents a compilation of the most recent implementation of artificial intelligence methods for solving different problems generated by the COVID-19. The problems addressed came from different fields and not only from medicine. The information contained in the book explores different areas of machine and deep learning, advanced image processing, computational intelligence, IoT, robotics and automation, optimization, mathematical modeling, neural networks, information technology, big data, data processing, data mining, and likewise. Moreover, the chapters include the theory and methodologies used to provide an overview of applying these tools to the useful contribution to help to face the emerging disaster. The book is primarily intended for researchers, decision makers, practitioners, and readers interested in these subject matters. The book is useful also as rich case studies and project proposals for postgraduate courses in those specializations.




Ethical Implications of Reshaping Healthcare With Emerging Technologies


Book Description

Improving quality of life is one of the main advantages of integrating new innovations into medicine. New technologies are revolutionizing medicine and opening new opportunities for patients, doctors, clinics, and companies. The patient's well-being is monitored autonomously by smartphones, digital medical records simplify everyday clinical work, virtual reality is used for treatment, and robots help in the operating room. The new technological possibilities in healthcare not only change patients’ lives, but also the work of doctors, clinics, and companies. In the fields of healthcare and medicine, new technologies can be used for patient communication, health monitoring, or for the treatment of patients, and modern research is devoted to advancing and understanding these technologies. Ethical Implications of Reshaping Healthcare With Emerging Technologies includes the most up-to-date research in the fields of healthcare and medicine worldwide, provides answers to the forms of treatment that are already possible in medicine, and illuminates the future possibilities that are already being researched. In addition, today's knowledge is translated and shown in how new technologies such as autonomous VR-system can be used for pain reduction as part of a treatment. Finally, this book examines the ethical guidelines in healthcare and medicine that are associated with the rapid development of these technologies. This book will be useful for the healthcare industry, hospital administration, the health insurance industry, doctors, healthcare workers, business professionals, IT specialists, medical software designers, scientists, practitioners, researchers, academicians, and students looking for the latest information on the use of emerging technologies in healthcare settings.




Artificial Intelligence in Behavioral and Mental Health Care


Book Description

Artificial Intelligence in Behavioral and Mental Health Care summarizes recent advances in artificial intelligence as it applies to mental health clinical practice. Each chapter provides a technical description of the advance, review of application in clinical practice, and empirical data on clinical efficacy. In addition, each chapter includes a discussion of practical issues in clinical settings, ethical considerations, and limitations of use. The book encompasses AI based advances in decision-making, in assessment and treatment, in providing education to clients, robot assisted task completion, and the use of AI for research and data gathering. This book will be of use to mental health practitioners interested in learning about, or incorporating AI advances into their practice and for researchers interested in a comprehensive review of these advances in one source. - Summarizes AI advances for use in mental health practice - Includes advances in AI based decision-making and consultation - Describes AI applications for assessment and treatment - Details AI advances in robots for clinical settings - Provides empirical data on clinical efficacy - Explores practical issues of use in clinical settings




Machine Learning and Artificial Intelligence


Book Description

Machine learning and artificial intelligence are already widely applied to facilitate our daily lives, as well as scientific research, but with the world currently facing a global COVID-19 pandemic, their capacity to provide an important tool to support those searching for a way to combat the novel corona virus has never been more important. This book presents the proceedings of the International Conference on Machine Learning and Intelligent Systems (MLIS 2020), which was due to be held in Seoul, Korea, from 25-28 October 2020, but which was delivered as an online conference on the same dates due to COVID-19 restrictions. MLIS 2020 was the latest in a series of annual conferences that aim to provide a platform for exchanging knowledge about the most recent scientific and technological advances in the field of machine learning and intelligent systems. The annual conference also strengthens links within the scientific community in related research areas. The book contains 53 papers, selected from more than 160 submissions and presented at MLIS 2020. Selection was based on the results of review and scored on: originality, scientific/practical significance, compelling logical reasoning and language. Topics covered include: data mining, image processing, neural networks, human health, natural language processing, video processing, computational intelligence, expert systems, human-computer interaction, deep learning, and robotics. Offering a current overview of research and developments in machine learning and artificial intelligence, the book will be of interest to all those working in the field.




Handbook of Research on Applied Intelligence for Health and Clinical Informatics


Book Description

Currently, informatics within the field of public health is a developing and growing industry. Clinical informatics are used in direct patient care by supplying medical practitioners with information that can be used to develop a care plan. Intelligent applications in clinical informatics facilitates with the technology-based solutions to analyze data or medical images and help clinicians to retrieve that information. Decision models aid with making complex decisions especially in uncertain situations. The Handbook of Research on Applied Intelligence for Health and Clinical Informatics is a comprehensive reference book that focuses on the study of resources and methods for the management of healthcare infrastructure and information. This book provides insights on how applied intelligence with deep learning, experiential learning, and more will impact healthcare and clinical information processing. The content explores the representation, processing, and communication of clinical information in natural and engineered systems. This book covers a range of topics including applied intelligence, medical imaging, telehealth, and decision support systems, and also looks at technologies and tools used in the detection and diagnosis of medical conditions such as cancers, diabetes, heart disease, lung disease, and prenatal syndromes. It is an essential reference source for diagnosticians, medical professionals, imaging specialists, data specialists, IT consultants, medical technologists, academicians, researchers, industrial experts, scientists, and students.