Artificial Intelligence, Evolutionary Computing and Metaheuristics


Book Description

Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation. Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo search, and multiobjective optimization and many applications. These reviews and chapters not only provide a timely snapshot of the state-of-art developments, but also provide inspiration for young researchers to carry out potentially ground-breaking research in the active, diverse research areas in artificial intelligence, cryptography, machine learning, evolutionary computation, and nature-inspired metaheuristics. This edited book can serve as a timely reference for graduates, researchers and engineers in artificial intelligence, computer sciences, computational intelligence, soft computing, optimization, and applied sciences.




Evolutionary Computation


Book Description

A clear and comprehensive introduction to the field of evolutionary computation that takes an integrated approach. Evolutionary computation, the use of evolutionary systems as computational processes for solving complex problems, is a tool used by computer scientists and engineers who want to harness the power of evolution to build useful new artifacts, by biologists interested in developing and testing better models of natural evolutionary systems, and by artificial life scientists for designing and implementing new artificial evolutionary worlds. In this clear and comprehensive introduction to the field, Kenneth De Jong presents an integrated view of the state of the art in evolutionary computation. Although other books have described such particular areas of the field as genetic algorithms, genetic programming, evolution strategies, and evolutionary programming, Evolutionary Computation is noteworthy for considering these systems as specific instances of a more general class of evolutionary algorithms. This useful overview of a fragmented field is suitable for classroom use or as a reference for computer scientists and engineers.




Evolutionary Computation in Bioinformatics


Book Description

Bioinformatics has never been as popular as it is today. The genomics revolution is generating so much data in such rapid succession that it has become difficult for biologists to decipher. In particular, there are many problems in biology that are too large to solve with standard methods. Researchers in evolutionary computation (EC) have turned their attention to these problems. They understand the power of EC to rapidly search very large and complex spaces and return reasonable solutions. While these researchers are increasingly interested in problems from the biological sciences, EC and its problem-solving capabilities are generally not yet understood or applied in the biology community.This book offers a definitive resource to bridge the computer science and biology communities. Gary Fogel and David Corne, well-known representatives of these fields, introduce biology and bioinformatics to computer scientists, and evolutionary computation to biologists and computer scientists unfamiliar with these techniques. The fourteen chapters that follow are written by leading computer scientists and biologists who examine successful applications of evolutionary computation to various problems in the biological sciences.* Describes applications of EC to bioinformatics in a wide variety of areas including DNA sequencing, protein folding, gene and protein classification, drug targeting, drug design, data mining of biological databases, and biodata visualization.* Offers industrial and academic researchers in computer science, biology, and bioinformatics an important resource for applying evolutionary computation.* Includes a detailed appendix of biological data resources.




Fourth European Conference on Artificial Life


Book Description

Topics include self-organization, the origins of life, natural selection, evolutionary computation, neural networks, communication, artificial worlds, software agents, philosophical issues in artificial life, ethical problems, and learning and development. Researchers in artificial life attempt to use the physical representation of lifelike phenomena to understand the organizational principles underlying the dynamics of living systems. The goal of the 1997 European Conference on Artificial Life is to provoke new understandings of the relationships between the natural and the artificial. Topics include self-organization, the origins of life, natural selection, evolutionary computation, neural networks, communication, artificial worlds, software agents, philosophical issues in artificial life, ethical problems, and learning and development.




Evolutionary Design by Computers


Book Description

"Evolutionary Design By Computers offers an enticing preview of the future of computer-aided design: Design by Darwin." Lawrence J. Fogel, President, Natural Selection, Inc. "Evolutionary design by computers is the major revolution in design thinking of the 20th century and this book is the best introduction available." Professor John Frazer, Swire Chair and Head of School of Design, the Hong Kong Polytechnic University, Author of "An Evolutionary Architecture" "Peter Bentley has assembled and edited an important collection of papers that demonstrate, convincingly, the utility of evolutionary computation for engineering solutions to complex problems in design." David B. Fogel, Editor-in-Chief, IEEE Transactions on Evolutionary Computation Some of the most startling achievements in the use of computers to automate design are being accomplished by the use of evolutionary search algorithms to evolve designs. Evolutionary Design By Computers provides a showcase of the best and most original work of the leading international experts in Evolutionary Computation, Engineering Design, Computer Art, and Artificial Life. By bringing together the highest achievers in these fields for the first time, including a foreword by Richard Dawkins, this book provides the definitive coverage of significant developments in Evolutionary Design. This book explores related sub-areas of Evolutionary Design, including: design optimization creative design the creation of art artificial life. It shows for the first time how techniques in each area overlap, and promotes the cross-fertilization of ideas and methods.




Artificial Life and Evolutionary Computation


Book Description

The Italian community in Artificial Life and Evolutionary computation has grown remarkably in recent years, and this book is the first broad collection of its major interests and achievements (including contributions from foreign countries). The contributions in Artificial Life as well as in Evolutionary Computation allow one to see the deep connections between the two fields. The topics addressed are extremely relevant for present day research in Artificial Life and in Evolutionary Computation, which include important contributions from very well-known researchers. The volume provides a very broad picture of the Italian activities in this field.




Illustrating Evolutionary Computation with Mathematica


Book Description

An essential capacity of intelligence is the ability to learn. An artificially intelligent system that could learn would not have to be programmed for every eventuality; it could adapt to its changing environment and conditions just as biological systems do. Illustrating Evolutionary Computation with Mathematica introduces evolutionary computation to the technically savvy reader who wishes to explore this fascinating and increasingly important field. Unique among books on evolutionary computation, the book also explores the application of evolution to developmental processes in nature, such as the growth processes in cells and plants. If you are a newcomer to the evolutionary computation field, an engineer, a programmer, or even a biologist wanting to learn how to model the evolution and coevolution of plants, this book will provide you with a visually rich and engaging account of this complex subject.* Introduces the major mechanisms of biological evolution.* Demonstrates many fascinating aspects of evolution in nature with simple, yet illustrative examples.* Explains each of the major branches of evolutionary computation: genetic algorithms, genetic programming, evolutionary programming, and evolution strategies.* Demonstrates the programming of computers by evolutionary principles using Evolvica, a genetic programming system designed by the author.* Shows in detail how to evolve developmental programs modeled by cellular automata and Lindenmayer systems.* Provides Mathematica notebooks on the Web that include all the programs in the book and supporting animations, movies, and graphics.




Advances in Evolutionary Computing


Book Description

This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.




Artificial Life IV


Book Description

This book brings together contributions to the Fourth Artificial Life Workshop, held at the Massachusetts Institute of Technology in the summer of 1994.




The Art of Artificial Evolution


Book Description

Art is the Queen of all sciences communicating knowledge to all the generations of the world. Leonardo da Vinci Artistic behavior is one of the most valued qualities of the human mind. Although artistic manifestations vary from culture to culture, dedication to artistic tasks is common to all. In other words, artistic behavior is a universal trait of the human species. The current, Western de?nition of art is relatively new. However, a d- ication to artistic endeavors — such as the embellishment of tools, body - namentation, or gathering of unusual, arguably aesthetic, objects — can be traced back to the origins of humanity. That is, art is ever-present in human history and prehistory. Artandsciencesharealongandenduringrelationship.Thebest-known- ample of the explorationof this relationship is probably the work of Leonardo da Vinci. Somewhere in the 19th century art and science grew apart, but the cross-transfer of concepts between the two domains continued to exist. Currently, albeit the need for specialization, there is a growing interest in the exploration of the connections between art and science. Focusingoncomputerscience,itisinterestingtonoticethatearlypioneers of this discipline such as Ada Byron and Alan Turing showed an interest in using computational devices for art-making purposes. Oddly, in spite of this early interest and the ubiquity of art, it has received relatively little attention fromthe computersciencecommunityingeneral,and,moresurprisingly,from the arti?cial intelligence community.