Radiation Physics for Medical Physicists


Book Description

This book summarizes basic knowledge of atomic, nuclear, and radiation physics that professionals need for efficient and safe use of ionizing radiation. Concentrating on the underlying principles of radiation physics, it covers prerequisite knowledge for medical physics courses on the graduate and post-graduate levels, providing the link between elementary physics on the one hand and the intricacies of the medical physics specialties on the other.




Setting Up a Radiotherapy Programme


Book Description

This publication provides guidance for designing and implementing radiotherapy programmes, taking into account clinical, medical physics, radiation protection and safety aspects. It reflects current requirements for radiotherapy infrastructure in settings with limited resources. It will be of use to professionals involved in the development, implementation and management of radiotherapy programmes




Nuclear Medicine Physics


Book Description

Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological




Medical Physics During the COVID-19 Pandemic


Book Description

The first book to cover the impact of COVID-19 on the field of medical physics Edited by two experts in the field, with chapter contributions from subject area specialists around the world Broad, global coverage, ranging from the impact on teaching, research, and publishing, with unique perspectives from journal editors and students and trainees




Physical Aspects of Organs and Imaging


Book Description

Medical Physics covers the applied branch of physics concerned with the application of concepts and methods of physics to diagnostics and therapeutics of human diseases. The first part, Physical and Physiological Aspects of the Body, covers those body systems that have a strong physical component, such as body mechanics, energy household, action potential, signal transmission in neurons, respiratory and circulatory system as well as visual and sound perception. The second part of this volume, Imaging Modalities without Ionizing Radiation, introduces sonography, endoscopy, and magnetic resonance imaging. The second volume complements the imaging modalities with the use of ionizing radiation: x-ray radiography, scintigraphy, SPECT, and PET. This first part is followed by chapters on radiation treatment of tumors, in particular x-ray radiotherapy, proton and neutron radiation therapy, and brachytherapy. The last part treats aspects of diagnostics and therapeutics beyond radiology, including laser applications, multifunctional nanoparticles and prosthetics. This first volume - connects the basic principles of physics with the functionality of the body and with physical methods used for diagnostics and therapeutics. - covers the first part of the entire field, including the physics of the body and imaging methods without the use of ionizing radiation. - provides an introduction for Bachelor students to the main concepts of Medical Physics during their first semesters guiding them to further specialized and advanced literature. - contains many questions & answers related to the content of each chapter. - is also available as a set together with Volume 2. Contents Part A: Physical and physiological aspects of the body Brief overview of body parts and functions Body mechanics and muscles Elastomechanics: bones and fractures Energy household of the body Resting potential and action potential Signal transmission in neurons Electrophysical aspects of the heart The circulatory system The respiratory system Kidneys Basic mechanism of vision Sound and sound perception Part B: Imaging modalities without ionizing radiation Sonography Endoscopy Magnetic resonance imaging Questions & answers




Radiation Protection in Medical Physics


Book Description

This book introduces the fundamental aspects of Radiation Protection in Medical Physics and covers three main themes: General Radiation Protection Principles; Radiobiology Principles; Radiation Protection in Hospital Medical Physics. Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advances in the field. Some issues specific to the individual techniques are also treated, e.g. calculation of patient dose as well as that of workers in hospital, optimisation of equipment used, shielding design of radiation facilities, radiation in oncology such as use of brachytherapy in gynecology or interventional procedures. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehensive introduction to the field as well as a reliable overview of the most recent developments.




Introduction to Medical Physics


Book Description

This textbook provides an accessible introduction to the basic principles of medical physics, the applications of medical physics equipment, and the role of a medical physicist in healthcare. Introduction to Medical Physics is designed to support undergraduate and graduate students taking their first modules on a medical physics course, or as a dedicated book for specific modules such as medical imaging and radiotherapy. It is ideally suited for new teaching schemes such as Modernising Scientific Careers and will be invaluable for all medical physics students worldwide. Key features: Written by an experienced and senior team of medical physicists from highly respected institutions The first book written specifically to introduce medical physics to undergraduate and graduate physics students Provides worked examples relevant to actual clinical situations




Diagnostic Radiology Physics


Book Description

This publication is aimed at students and teachers involved in programmes that train medical physicists for work in diagnostic radiology. It provides a comprehensive overview of the basic medical physics knowledge required in the form of a syllabus for the practice of modern diagnostic radiology. This makes it particularly useful for graduate students and residents in medical physics programmes. The material presented in the publication has been endorsed by the major international organizations and is the foundation for academic and clinical courses in both diagnostic radiology physics and in emerging areas such as imaging in radiotherapy.




The Essential Physics of Medical Imaging


Book Description

Widely regarded as the cornerstone text in the field, the successful series of editions continues to follow the tradition of a clear and comprehensive presentation of the physical principles and operational aspects of medical imaging. The Essential Physics of Medical Imaging, 4th Edition, is a coherent and thorough compendium of the fundamental principles of the physics, radiation protection, and radiation biology that underlie the practice and profession of medical imaging. Distinguished scientists and educators from the University of California, Davis, provide up-to-date, readable information on the production, characteristics, and interactions of non-ionizing and ionizing radiation, magnetic fields and ultrasound used in medical imaging and the imaging modalities in which they are used, including radiography, mammography, fluoroscopy, computed tomography, magnetic resonance, ultrasound, and nuclear medicine. This vibrant, full-color text is enhanced by more than 1,000 images, charts, and graphs, including hundreds of new illustrations. This text is a must-have resource for medical imaging professionals, radiology residents who are preparing for Core Exams, and teachers and students in medical physics and biomedical engineering.




Practical Medical Physics


Book Description

Provides an accessible introduction to practical medical physics within a hospital environment Maps to the course content of the Scientist Training Programme in the NHS Acts as a complement to the academic books often recommended for medical physics courses