Aspects of Polyurethanes


Book Description

Polyurethanes are formed by reacting a polyol (an alcohol with more than two reactive hydroxyl groups per molecule) with a diisocyanate or a polymeric isocyanate in the presence of suitable catalysts and additives. Because a variety of diisocyanates and a wide range of polyols can be used to produce polyurethane, a broad spectrum of materials can be produced to meet the needs of specific applications. During World War II, a widespread use of polyurethanes was first seen, when they were used as a replacement for rubber, which at that time was expensive and hard to obtain. During the war, other applications were developed, largely involving coatings of different kinds, from airplane finishes to resistant clothing. Subsequent decades saw many further developments and today we are surrounded by polyurethane applications in every aspect of our everyday lives. While polyurethane is a product that most people are not overly familiar with, as it is generally "hidden" behind covers or surfaces made of other materials, it would be hard to imagine life without polyurethanes.




Polyurethane Polymers: Blends and Interpenetrating Polymer Networks


Book Description

Polyurethane Polymers: Blends and Interpenetrating Networks deals with almost all aspects of blends and IPNs formed by polyurethane, including the thermal, mechanical, morphological, and viscoelastic properties of each blend presented in the book. In addition, major applications related to these blends and IPNs are mentioned. - Provides an elaborate coverage of the chemistry of polyurethane, including its synthesis and properties - Includes available characterization techniques - Relates types of polyurethanes to their potential properties - Discusses blends options




Polyurethane Elastomers


Book Description

A comprehensive account of the physical / mechanical behaviour of polyurethanes (PU ́s) elastomers, films and blends of variable crystallinity. Aspects covered include the elasticity and inelasticity of amorphous to crystalline PUs, in relation to their sensitivity to chemical and physical structure. A study is made of how aspects of the constitutive responses of PUs vary with composition: the polyaddition procedure, the hard segment, soft segment and chain extender (diols and diamines) are varied systematically in a large number of systems of model and novel crosslinked andthermoplastic PUs. Results will be related to: microstructural changes, on the basis of evidence from x-ray scattering (SAXS and WAXS), and also dynamic mechanical analyses (DMA), differential scanning calorimetry (DSC) and IR dichroism. Inelastic effects will be investigated also by including quantitative correlations between the magnitude of the Mullins effect and the fractional energy dissipation by hysteresis under cyclic straining, giving common relations approached by all the materials studied. A major structural feature explored is the relationship between the nature of the hard segment (crystallising or not) and that of the soft segments. Crystallinity has been sometimes observed in the commercial PUs hard phase but this is usually limited to only a few percent for most hard segment structures when solidified from the melt. One particular diisocyanate, 4,4’-dibenzyl diisocyanate (DBDI) that, in the presence of suitable chain extenders ( diols or diamines), gives rise to significant degrees of crystallinity [i-iii] and this is included in the present work. Understanding the reaction pathways involved, in resolving the subtle morphological evolution at the nanometre level, and capturing mathematically the complex, large-deformation nonlinear viscoelastic mechanical behaviour are assumed to bring new important insights in the world basic research in polyurethanes and towards applied industrial research in this area.




Polyurethane Polymers: Composites and Nanocomposites


Book Description

Polyurethane Polymers: Composites and Nanocomposites concentrates on the composites and nanocomposites of polyurethane based materials. Polyurethane composites are a very important class of materials widely used in the biomedical and industrial field that offer numerous potential applications in many areas. This book discusses current research and identifies future research needs in the area. - Provides an elaborate coverage of the chemistry of polyurethane, its synthesis, and properties - Includes available characterization techniques - Relates types of polyurethanes to their potential properties - Discusses composites, nanocomposites options, and PU recycling




Linear Polyurethanes


Book Description

This volume describes in detail the mechanisms of the diisocyanates and polyols polyaddition process as well as its kinetic and process aspects important for obtaining linear polyurethanes. General kinetics of the process and its experimental verification, using GPC chromatography as well as NMR spectroscopy and MALDI-ToF spectrometry, are presente




Polyurethanes


Book Description

This book, cohesively written by an expert author with supreme breadth and depth of perspective on polyurethanes, provides a comprehensive overview of all aspects of the science and technology on one of the most commonly produced plastics. Covers the applications, manufacture, and markets for polyurethanes, and discusses analytical methods, reaction mechanisms, morphology, and synthetic routes Provides an up-to-date view of the current markets and trend analysis based on patent activity and updates chapters to include new research Includes two new chapters on PU recycling and PU hybrids, covering the opportunities and challenges in both




Szycher's Handbook of Polyurethanes, Second Edition


Book Description

A practical handbook rather than merely a chemistry reference, Szycher's Handbook of Polyurethanes, Second Edition offers an easy-to-follow compilation of crucial new information on polyurethane technology, which is irreplaceable in a wide range of applications. This new edition of a bestseller is an invaluable reference for technologists, marketers, suppliers, and academicians who require cutting-edge, commercially valuable data on the most advanced uses for polyurethane, one of the most important and complex specialty polymers. internationally recognized expert Dr. Michael Szycher updates his bestselling industry "bible" With seven entirely new chapters and five that are revised and updated, this book summarizes vital contents from U.S. patent literature—one of the most comprehensive sources of up-to-date technical information. These patents illustrate the most useful technology discovered by corporations, universities, and independent inventors. Because of the wealth of information they contain, this handbook features many full-text patents, which are carefully selected to best illustrate the complex principles involved in polyurethane chemistry and technology. Features of this landmark reference include: Hundreds of practical formulations Discussion of the polyurethane history, key terms, and commercial importance An in-depth survey of patent literature Useful stoichiometric calculations The latest "green" chemistry applications A complete assessment of medical-grade polyurethane technology Not biased toward any one supplier’s expertise, this special reference uses a simplified language and layout and provides extensive study questions after each chapter. It presents rich technical and historical descriptions of all major polyurethanes and updated sections on medical and biological applications. These features help readers better understand developmental, chemical, application, and commercial aspects of the subject.




Polyurethane Chemistry


Book Description

"This book is about Polyurethane Chemistry: Renewable Polyols and Isocyanates"--




Castable Polyurethane Elastomers


Book Description

This second edition of a bestseller is a practical guide to the production of castable polyurethane articles. The book shows the progression from raw materials to prepolymer production, including the chemistry and functionality of the processes. It provides a comprehensive look at various problem-solving and processing techniques, examining the selection of different systems on both the micro and macro levels. Reorganized for better flow, this edition describes new processing methods, expands coverage of health and safety aspects, and brings all standards up to date.




High Performance Polymers - Polyimides Based


Book Description

The feature of polyimides and other heterocyclic polymers are now well-established and used for long term temperature durability in the range of 250 - 350'C. This book will review synthesis, mechanisms, ultimate properties, physico-chemical properties, processing and applications of such high performance materials needed in advanced technologies. It presents interdisciplinary papers on the state of knowledge of each topic under consideration through a combination of overviews and original unpublished research. The volume contains eleven chapters divided into three sections: Chemistry; Chemical and Physical Properties; and Applications.