Aspects of WIMP Dark Matter Searches at Colliders and Other Probes


Book Description

This thesis covers several theoretical aspects of WIMP (weakly interacting massive particles) dark matter searches, with a particular emphasis on colliders. It mainly focuses on the use of effective field theories as a tool for Large Hadron Collider (LHC) searches, discussing in detail the issue of their validity, and on simplified dark matter models, which are receiving a growing attention from the physics community. It highlights the theoretical consistency of simplified models, which is essential in order to correctly exploit their potential and for them to be a common reference when comparing results from different experiments. This thesis is of interest to researchers (both theorists and experimentalists) in the field of dark matter searches, and offers a comprehensive introduction to dark matter and to WIMP searches for students and non-experts.







The Early Universe


Book Description

The Early Universe has become the standard reference on forefront topics in cosmology, particularly to the early history of the Universe. Subjects covered include primordial nubleosynthesis, baryogenesis, phases transitions, inflation, dark matter, and galaxy formation, relics such as axions, neutrinos and monopoles, and speculations about the Universe at the Planck time. The book includes more than ninety figures as well as a five-page update discussing recent developments such as the COBE results.




Searching for Dark Matter with Cosmic Gamma Rays


Book Description

Searching for Dark Matter with Cosmic Gamma Rays summarizes the evidence for dark matter and what we can learn about its particle nature using cosmic gamma rays. It has almost been 100 years since Fritz Zwicky first detected hints that most of the matter in the Universe that doesn't directly emit or reflect light. Since then, the observational evidence for dark matter has continued to grow. Dark matter may be a new kind of particle that is governed by physics beyond our Standard Model of particle physics. In many models, dark matter annihilation or decay produces gamma rays. There are a variety of instruments observing the gamma-ray sky from tens of MeV to hundreds of TeV. Some make deep, focused observations of small regions, while others provide coverage of the entire sky. Each experiment offers complementary sensitivity to dark matter searches in a variety of target sizes, locations, and dark matter mass scales. We review results from recent gamma-ray experiments including anomalies some have attributed to dark matter. We also discuss how our gamma-ray observations complement other dark matter searches and the prospects for future experiments.




Search for Dark Matter Produced in Association with a Higgs Boson Decaying to Two Bottom Quarks at ATLAS


Book Description

This thesis reports on the search for dark matter in data taken with the ATLAS detector at CERN’s Large Hadron Collider (LHC). The identification of dark matter and the determination of its properties are among the highest priorities in elementary particle physics and cosmology. The most likely candidate, a weakly interacting massive particle, could be produced in the high energy proton-proton collisions at the LHC. The analysis presented here is unique in looking for dark matter produced together with a Higgs boson that decays into its dominant decay mode, a pair of b quarks. If dark matter were seen in this mode, we would learn directly about the production mechanism because of the presence of the Higgs boson. This thesis develops the search technique and presents the most stringent production limit to date.




Astrophysics And Cosmology - Proceedings Of The 26th Solvay Conference On Physics


Book Description

Ever since 1911, the Solvay Conferences have shaped modern physics. The format is quite different from other conferences as the emphasis is placed on discussion. The 26th edition held in October 2014 in Brussels and chaired by Roger Blandford continued this tradition and addressed some of the most pressing open questions in the fields of astrophysics and cosmology, gathering many of the leading figures working on a wide variety of profound problems.The proceedings contain the 'rapporteur talks' giving a broad overview with unique insights by distinguished renowned scientists. These lectures cover the five sessions: 'Neutron Stars', 'Black Holes', 'Cosmic Dawn', 'Dark Matter' and 'Cosmic Microwave Background'.In the Solvay tradition, the proceedings also include the prepared comments to the rapporteur talks. The discussions among the participants — expert, yet lively and sometimes contentious — have been edited to retain to retain their flavor and are reproduced in full. The reader is taken on a breathtaking ride through 42 years of extraordinary discovery since astrophysics was last on the Solvay program and 57 years since cosmology was last discussed.




Beyond the Standard Model Cocktail


Book Description

This book provides a remarkable and complete survey of important questions at the interface between theoretical particle physics and cosmology. After discussing the theoretical and experimental physics revolution that led to the rise of the Standard Model in the past century, the author reviews all the major open puzzles, among them the hierarchy problem, the small value of the cosmological constant, the matter-antimatter asymmetry, and the dark matter enigma, including the state-of-the-art regarding proposed solutions. Also addressed are the rapidly expanding fields of thermal dark matter, cosmological first-order phase transitions and gravitational-wave signatures. In addition, the book presents the original and interdisciplinary PhD research work of the author relating to Weakly-Interacting-Massive-Particles around the TeV scale, which are among the most studied dark matter candidates. Motivated by the absence of experimental evidence for such particles, this thesis explores the possibility that dark matter is much heavier than what is conventionally assumed.




Particle Dark Matter


Book Description

Describes the dark matter problem in particle physics, astrophysics and cosmology for graduate students and researchers.




Noble Gas Detectors


Book Description

This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc. The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation for national nuclear security and for monitoring nuclear materials.




Dark Side Of The Universe, The: Experimental Efforts And Theoretical Framework - Proceedings Of The Second Workshop


Book Description

The search for dark matter is one of the most relevant topics in astroparticle physics today. It involves many different experimental techniques that should collectively contribute significantly to the identification of the nature and characteristics of the dark matter constituents, offering at the same time much room for new technological developments. The theoretical framework is also essential, both for properly interpreting the different results and for suggesting the most interesting possible candidates and search strategies. This book compares the methods, the developments and the results.