The Foxtail Millet Genome


Book Description

This book presents up-to-date information on foxtail millet genomics, with a particular focus on its agronomic importance, genome architecture, marker development, evolutionary and diversity studies, comparative genomics and stress biology. The topics discussed have the potential to open up a new era of crop improvement in foxtail millet and other related grass species. Foxtail millet (Setaria italica L.) is the oldest domesticated crop in the world (domesticated >8700 years ago) and it has been extensively grown in the semi-arid regions of Asia, Europe and the Americas as a food and fodder crop ever since. Further, as a C4 crop with close genetic relatedness to several biofuel grasses, foxtail millet has been promoted as a model plant. In view of its importance, the US Department of Energy Joint Genome Institute and Beijing Genomics Institute have independently sequenced the genome of foxtail millet. The availability of the draft genome sequence has advanced the genomics and genetics of this important crop, resulting in the development of large-scale genome-wide molecular markers and demonstration of their utility in genomics-assisted breeding, as well as the identification of the molecular and biological roles of several stress-responsive gene families in connection with abiotic stress tolerance. In addition, several open access databases have been developed to make these resources for crop improvement through structural and functional genomics widely available.










Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops


Book Description

The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.




Genetics and Genomics of Setaria


Book Description

Setaria viridis and S.italica make up a model grass system to investigate C4 photosynthesis, cell wall biosynthesis, responses to drought, herbicide, and other environmental stressors, genome dynamics, developmental genetics and morphology, and interactions with microorganisms. Setaria viridis (green foxtail) is one of the world’s most widespread weeds, and its small size, native variation, rapidly burgeoning genetic and genomic resources, and transformability are making it the system of choice for both basic research and its translation into crop improvement. Its domesticated variant, S. italica (foxtail millet), is a drought-hardy cereal grown in China, India and Africa, and new breeding techniques show great potential for improving yields and nutrition for drought-prone regions. This book brings together for the first time evolutionary, genomic, genetic, and morphological analyses, together with protocols for growing and transforming Setaria, and approaches to high throughput genotyping and candidate gene analysis. Authors include major Setaria researchers from both the USA and overseas.




Genetic and Genomic Resources for Grain Cereals Improvement


Book Description

Genetic and Genomic Resources For Cereals Improvement is the first book to bring together the latest available genetic resources and genomics to facilitate the identification of specific germplasm, trait mapping, and allele mining that are needed to more effectively develop biotic and abiotic-stress-resistant grains. As grain cereals, including rice, wheat, maize, barley, sorghum, and millets constitute the bulk of global diets, both of vegetarian and non-vegetarian, there is a greater need for further genetic improvement, breeding, and plant genetic resources to secure the future food supply. This book is an invaluable resource for researchers, crop biologists, and students working with crop development and the changes in environmental climate that have had significant impact on crop production. It includes the latest information on tactics that ensure that environmentally robust genes and crops resilient to climate change are identified and preserved. - Provides a single-volume resource on the global research work on grain cereals genetics and genomics - Presents information for effectively managing and utilizing the genetic resources of this core food supply source - Includes coverage of rice, wheat, maize, barley, sorghum, and pearl, finger and foxtail millets




Genetic and Genomic Resources of Grain Legume Improvement


Book Description

Grain legumes, including common-bean, chickpea, pigeonpea, pea, cowpea, lentil and others, form important constituents of global diets, both vegetarian and non-vegetarian. Despite this significant role, global production has increased only marginally in the past 50 years. The slow production growth, along with a rising human population and improved buying capacity has substantially reduced the per capita availability of food legumes. Changes in environmental climate have also had significant impact on production, creating a need to identify stable donors among genetic resources for environmentally robust genes and designing crops resilient to climate change. Genetic and Genomic Resources of Grain Legume Improvement is the first book to bring together the latest resources in plant genetics and genomics to facilitate the identification of specific germplasm, trait mapping and allele mining to more effectively develop biotic and abiotic-stress-resistant grains. This book will be an invaluable resource for researchers, crop biologists and students working with crop development. - Explores origin, distribution and diversity of grain legumes - Presents information on germplasm collection, evaluation and maintenance - Offers insight into pre-breeding/germplasm enhancement efforts - Integrates genomic and genetic resources in crop improvement - Internationally contributed work




Rice Genetics V


Book Description

This volume is a collection of the papers presented at the Fifth IRGS in 2005. It reports the latest developments in the field and includes research on breeding, mapping of genes and quantitative trait loci, identification and cloning of cndidate genesfor biotic and abiotic stresses, gene expression, as well as genomic databases and mutant induction for functional genomics




Manual on MUTATION BREEDING THIRD EDITION


Book Description

This paper provides guidelines for new high-throughput screening methods – both phenotypic and genotypic – to enable the detection of rare mutant traits, and reviews techniques for increasing the efficiency of crop mutation breeding.