Combustion Chemistry of Biodiesel for the Use in Urban Transport Buses


Book Description

Biofuels, such as biodiesel, offer benefits as a possible alternative to conventional fuels due to their fuel source sustainability and their reduced environmental impact. Before they can be used, it is essential to understand their combustion chemistry and emission characterizations due to a number of issues associated with them (e.g., high emission of nitrogen oxides (NOx), lower heating value than diesel, etc.). During this study, emission characterizations of different biodiesel blends (B0, B20, B50, and B100) were measured on three different feedstocks (soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO)) with various characteristics, while an ultra-low sulfur diesel (ULSD) was used as base fuel at low-temperature combustion (LTC). A laboratory combustion chamber was used to analyze soot formation, NOx emissions, while real engine emissions were measured for further investigation on PM and NOx emissions. For further study, carbon emissions (CO, CO2, and CH4) were also measured to understand their relations with feedstocks' type. The emissions were correlated with fuel's characteristics, especially unsaturation degree (number of double bonds in methyl esters) and chain length (oxygen-to-carbon ratio). The experimental results obtained from laboratory experiments were confirmed by field experiments (real engines) collected from Toledo area regional transit authority (TARTA) buses. Combustion analysis results showed that the neat biodiesel fuels had longer ignition delays and lower ignition temperatures compared to ULSD at the tested condition. The results showed that biodiesel containing more unsaturated fatty acids emitted higher levels of NOx compared to biodiesel with more saturated fatty acids. A paired t-test on fuels showed that neat biodiesel fuels had significant reduction in the formation of NOx compared with ULSD. In another part of this study, biodiesel fuel with a high degree of unsaturation and high portion of long chains of methyl esters (SME) produced more CO and less CO2 emissions than those with low degrees of unsaturation and short chain lengths (WCO and TO, respectively). In addition, biodiesel fuels with long and unsaturated chains released more CH4 than the ones with shorter and less unsaturated chains. Experimental results on soot particles showed a significant reduction in soot emissions when using biodiesel compared to ULSD. For neat biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles was greater than the average soot particle from biodiesel blends. Eight elements were detected as the marker metals in biodiesel soot particles. The conclusion suggests that selected characterization methods are valuable for studying the structure and distribution of particulates. Experiments on both PM and NOx emissions were conducted on real engines in parallel with laboratory study. Field experiments using TARTA buses were performed on buses equipped with/without post-treatment technologies. The performance of the bus that ran on blended biodiesel was found to be very similar to ULSD. As a part of this study, the toxic nature of engine exhausts under different idling conditions was studied. The results of the PM emission analysis showed that the PM mean value of emission is dependent on the engine operation conditions and fuel type. Besides, different idling modes were investigated with respect to organic carbon (OC), elemental carbon (EC), and elemental analysis of the PMs collected from public transit buses in Toledo, Ohio. In the modeling portion of this work, a simplified model was developed by using artificial neural network (ANN) to predict NOx emissions from TARTA buses via engine parameters. ANN results showed that the developed ANN model was capable of predicting the NOx emissions of the tested engines with excellent correlation coefficients, while root mean square errors (RMSEs) were in acceptable ranges. The ANN study confirmed that ANN can provide an accurate and simple approach in the analysis of complex and multivariate problems, especially for idle engine NOx emissions. Finally, in the last part of the modeling study, a biodiesel surrogate has been proposed and main pathways have been derived to present a simple model for NOx formation in biodiesel combustion via stochastic simulation algorithm (SSA). The main reaction pathways are obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND is added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The predicted results are in good agreement with a limited number of experimental data at LTC conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The SSA model shows the potential to predict NOx emission concentrations, when the peak combustion temperature increases through the addition of ULSD to biodiesel. The SSA method demonstrates the possibility of reducing the computational complexity in biodiesel emissions modeling. Based on these findings, it can be concluded that both alternative renewable fuels (biodiesel blends) as well as the LTC condition are suitable choices for existing diesel engines to improve the sustainability of fuel and to reduce environmental emissions.




An Analysis on Vehicular Exhaust Emissions from Transit Buses Running on Biodiesel Blends


Book Description

This experimental study presents a comprehensive analysis of exhaust emission variation from the public transit buses in the city of Toledo running on alternative fuels. The pollutants from the exhaust that are monitored in this study are carbon monoxide, sulfur dioxide, oxides of nitrogen (NO, NO2, and NOX), and carbon dioxide. The performance of engine variables are also measured simultaneously with exhaust emission data. The engine variables affecting the pollutant levels in the exhaust are acceleration, engine load, engine speed, vehicle speed, fuel flow rate, coolant temperature, output torque, and boost pressure. The on-road and idle-engine variation of pollutant levels in the exhaust are studied. The pollutant level variation in the exhaust of a bus is different for different operation modes. The pollutant levels are found to decrease when the vehicle is on-road, with the increase in biodiesel concentration in the base fuel. On contrast, the pollutant levels are observed to increase with biodiesel concentration, when the bus is in idle-engine mode. Furthermore, when the bus is in motion, the pollutant levels in the exhaust are less as compared to the idle-engine mode. This observation helps to understand that vehicles in motion deliver the appropriate amount of fuel into the cylinder for a more complete combustion. Also, an engine in idle mode does not run at its optimum temperature and conditions that lead to incomplete combustion. The engine initial temperature, accessory load on the engine, and engine speed are found to affect the emission levels significantly. The engines at low temperatures are found to emit pollutants of higher levels because of the initial warm-up phase of an engine. Furthermore, with the increase in load and speed, the engine has to produce higher work requiring a higher fueling rate and thereby resulting in higher emission levels in the exhaust. During the engine start, transient emissions of the monitored pollutants are significantly higher because the air-fuel ratio cannot be maintained at stoichiometric mixture during start and stop operations. Furthermore, during the engine start-up, the heat necessary in the reaction chamber is not maintained that results in incomplete combustion. Hence, more transient emissions are emitted during the engine start-up. The parameters influencing pollutant levels for on-road and idle-engine conditions are identified, using regression analysis, for different biodiesel blends. Using regression analysis, the correlation and the amount of impact associated with the engine variables on pollutant levels are identified. The regression analysis helped to identify the parameters affecting pollutant levels and the relationships between different monitored parameters and pollutants in the exhaust. This study and analysis of exhaust emission variation of biodiesel blends will assist the operators of biodiesel fleets and regulators of air pollution in selecting the appropriate operating variables for emission control strategies in their area.




Effects of Biodiesel Blended Fuels on Exhaust Emissions of Diesel Engine


Book Description

The effect of biodiesel blended fuels on exhaust emissions of diesel engines was investigated. The test fuels were 2%, 5%, 20% of rapeseed methyl ester, pure rapeseed methyl ester, 2%, 5%, 20% of palm stearin methyl ester, pure palm strearin methyl ester, 20%, 30%, 40% of used cooking oil methyl ester. Two kinds of test vehicles were Toyota D4D 2.5L and Isuzu DMAX 2.5L. The exhaust emissions analysis were carried out by running on chassis dynamometer. The results showed that the blends of 2%, 5% of palm strearin methyl ester and rapeseed methyl ester showed did not significant difference in exhaust emissions and fuel consumption compared to based diesel. In the other hand, the blends of 5% showed tendency reduction of THC and PM emissions. The blends of 20% with all kinds methyl ester, the THC, PM emissions were decreased 10-34% and 6-34% while the fuel consumption was increased 2-5%. Used cooking oil methyl ester blended with diesel in ratio 30, 40%were decreased THC, PM emissions 18-27% and 16-36%. NOX emissions and fuel consumption were increased 7%, 5-6%. Pure palm strearin methyl ester and rapeseed methyl ester provides a greater reduction of all exhaust emissions. On the contrary, NOX emission and fuel consumption were increased.




Application of Thermo-fluid Processes in Energy Systems


Book Description

This book provides essential information on and case studies in the fields of energy technology, clean energy, energy efficiency, sustainability and the environment relevant to academics, researchers, practicing engineers, technologists and students. The individual chapters present cutting-edge research on key issues and recent developments in thermo-fluid processes, including but not limited to: energy technologies in process industries, applications of thermo-fluid processes in mining industries, applications of electrostatic precipitators in thermal power plants, biofuels, energy efficiency in building systems, etc. Helping readers develop an intuitive understanding of the relevant concepts in and solutions for achieving sustainability in medium and large-scale industries, the book offers a valuable resource for undergraduate, honors and postgraduate research students in the field of thermo-fluid engineering.







Biofuels and Bioenergy (BICE2016)


Book Description

These conference proceedings provide a comprehensive overview of and in-depth technical information on all possible bioenergy resources (solid, liquid, and gaseous), including cutting-edge themes such as advanced fuels and biogas. The book includes current state-of-the-art topics ranging from feedstocks and cost-effective conversion processes to biofuels economic analysis and environmental policy, and features case studies and quizzes for each section derived from the implementation of actual hands-on biofuel projects to aid learning. It offers readers a starting point on this challenging and exciting path. The central concepts are defined and explained in the context of process applications under various topics. By focussing on the pertinent fundamental principles in the environment and energy sciences and by repeatedly emphasizing the importance of their correlation, it offers a strong foundation for future study and practice. Learning about fundamental properties and mechanisms on an ongoing basis is absolutely essential for long-term professional viability in a technically vibrant area such as nanotechnology. The book has been written for undergraduate and graduate students in chemical, energy and environment engineering. However, selected sections can provide the basis for courses in civil, mechanical or electrical engineering. It includes a self-contained presentation of the key concepts of energy resources, solar thermal and photovoltaic systems, nuclear energy, biomass conversion technology and agricultural-waste processing. Throughout it interweaves descriptive material on sustainable development, clean coal technology, green technology, solid-waste management and lifecycle assessments. It offers an introduction to these topics rather than comprehensive coverage of the themes and their in-depth fundamentals.




The Effects of Oxidized Biodiesel Fuel on Fatty Acid Methyl Ester Composition and Particulate Matter Emissions From a Light-Duty Diesel Engine


Book Description

Diesel particulate matter (PM) is classified by the EPA as carcinogenic, with the transportation sector largely responsible these emissions within the United States. Biodiesel (B100) is derived from renewable sources, providing similar chemical composition to diesel fuel and is in the current diesel supply up to 5% across the nation. However, biodiesel has an inherent oxidation issue due to the unique mixture of fatty acid methyl ester (FAME) molecules present in the biodiesel that are not in diesel. Biodiesel oxidation can only be delayed, and the inevitable process results in changes to the original fuel composition that may alter emissions profiles. There have been limited studies on the effect of oxidized biodiesel fuel on PM emissions, and with increasing biodiesel production volumes, it is important to assess due to possible adverse human health effects. In this study, it was hypothesized that the change in fuel composition due to oxidation would lead to lower PM emissions because the presence of more fuel oxygen molecules and secondary oxidation products would enhance self-combustion characteristics. In this study, PM mass generated from a light-duty diesel engine running on three different fuel types--pure ("neat") B100 biodiesel, pure B0 diesel, and B20 (20% v/v biodiesel blend with diesel)--was quantified and compared to the PM mass (and concentrations) from repeated emissions testing using artificially oxidized B100 and B20 biodiesel as the fuel source. B100 fuel was heated at 110oC for 5, 10, and 20 hours ("oxidation states" 3, 2, and 1, respectively), verifying the extent of fuel oxidation by building an apparatus (Biodiesel Oxidation Stability Surveyor, BOSS) that quantified the biodiesel fuel's oxidative stability using a method equivalent to standard methods for determining the biofuel's induction period. Induction period increased linearly with time spent under the artificial oxidation conditions. A custom, load-based steady-state modal drive cycle was specially developed for emissions testing each neat and oxidized B100 and B20 fuel type in a light-duty diesel engine dynamometer. Observed changes in PM mass with increased fuel oxidation time occurred only for B20 fuel with a 51 ±13% decrease. Fuel properties such as cetane number, biodiesel content, density, and total aromatics were compared between neat and oxidized B20 and B100 samples. Cetane number increased 7% from 66.8 to 71.7 from B100 neat to B100 OX1 (20hrs) and density increased from 0.709g/cm3 to 0.723g/cm3. Chemical analysis of the biodiesel fuels by gas chromatography mass spectrometry (GCMS) quantified individual FAME compounds to determine key species involved in fuel oxidation. B100 FAME concentration widely varied, however, the B20 fuel blend showed that 20 hour artificial oxidation treatment decreased concentrations of the unsaturated FAMEs for C18:3n3, C18:2 cis-9,12, C18:1 (both cis- and trans- isomers) by 41.7 ±3.5%, 33.25 ±8.8%, and 21.9 ±6.9% relative to their initial concentration in the unoxidized fuel, respectively, in general agreement with literature values. The findings of this study help contribute a better understanding of oxidation effects on biodiesel fuel and link together fuel properties, chemical composition, and particulate emissions whereas most literature excludes detailed analysis of biodiesel fuel composition and associated emissions effects.







Exhaust Emissions Analysis for Ultra Low Sulfur Diesel and Biodiesel Garbage Trucks


Book Description

The main objective of this experimental thesis is to study the exhaust emissions of in-use garbage trucks for different idling modes fuelled with alternate fuels. The emission concentrations of carbon monoxide, sulfur dioxide, oxides of nitrogen (NO, NO2, and NOX), and carbon dioxide were examined with respect to engine parameters such as fuel temperature, coolant temperature and percent fuel. A Testo350 XL portable emission monitoring instrument was used to collect second by second data for the pollutants. Performance of engine parameters was also monitored simultaneously using on-board diagnostic (OBD) software. The tail pipe emissions from Ultra-Low Sulfur Diesel (ULSD) are compared with emissions from biodiesel blends. Hotter engines produced lower emissions compared to colder engines for all fuel blends and vehicle makes. Significant reductions in emission concentrations were observed due to the inspection and maintenance programs. The performance of biodiesel blends in reducing emission concentrations of pollutants across different vehicle makes was found to be inconsistent. A comprehensive study on various vehicle, fuel and operating parameters that effect the exhaust emission concentrations was conducted to find an alternative to ULSD.