Assessment of the Scientific Information for the Radiation Exposure Screening and Education Program


Book Description

The Radiation Exposure Compensation Act (RECA) was set up by Congress in 1990 to compensate people who have been diagnosed with specified cancers and chronic diseases that could have resulted from exposure to nuclear-weapons tests at various U.S. test sites. Eligible claimants include civilian onsite participants, downwinders who lived in areas currently designated by RECA, and uranium workers and ore transporters who meet specified residence or exposure criteria. The Health Resources and Services Administration (HRSA), which oversees the screening, education, and referral services program for RECA populations, asked the National Academies to review its program and assess whether new scientific information could be used to improve its program and determine if additional populations or geographic areas should be covered under RECA. The report recommends Congress should establish a new science-based process using a method called "probability of causation/assigned share" (PC/AS) to determine eligibility for compensation. Because fallout may have been higher for people outside RECA-designated areas, the new PC/AS process should apply to all residents of the continental US, Alaska, Hawaii, and overseas US territories who have been diagnosed with specific RECA-compensable diseases and who may have been exposed, even in utero, to radiation from U.S. nuclear-weapons testing fallout. However, because the risks of radiation-induced disease are generally low at the exposure levels of concern in RECA populations, in most cases it is unlikely that exposure to radioactive fallout was a substantial contributing cause of cancer.







Assessment of the Scientific Information for the Radiation Exposure Screening and Education Program


Book Description

The Radiation Exposure Compensation Act (RECA) was set up by Congress in 1990 to compensate people who have been diagnosed with specified cancers and chronic diseases that could have resulted from exposure to nuclear-weapons tests at various U.S. test sites. Eligible claimants include civilian onsite participants, downwinders who lived in areas currently designated by RECA, and uranium workers and ore transporters who meet specified residence or exposure criteria. The Health Resources and Services Administration (HRSA), which oversees the screening, education, and referral services program for RECA populations, asked the National Academies to review its program and assess whether new scientific information could be used to improve its program and determine if additional populations or geographic areas should be covered under RECA. The report recommends Congress should establish a new science-based process using a method called "probability of causation/assigned share" (PC/AS) to determine eligibility for compensation. Because fallout may have been higher for people outside RECA-designated areas, the new PC/AS process should apply to all residents of the continental US, Alaska, Hawaii, and overseas US territories who have been diagnosed with specific RECA-compensable diseases and who may have been exposed, even in utero, to radiation from U.S. nuclear-weapons testing fallout. However, because the risks of radiation-induced disease are generally low at the exposure levels of concern in RECA populations, in most cases it is unlikely that exposure to radioactive fallout was a substantial contributing cause of cancer.




A Review of the Draft Report of the NCI-CDC Working Group to Revise the 1985 Radioepidemiological Tables


Book Description

The National Research Council was asked by the Centers for Disease Control and Prevention (CDC) to review the draft report of the National Cancer Institute (NCI)-CDC's working group charged with revising the 1985 radioepidemiological tables. To this end, a subcommittee was formed consisting of members of the Council's Committee on an Assessment of the Centers for Disease Control and Prevention Radiation Programs and other experts. The original tables were mandated under Public Law 97-414 (the "Orphan Drug Act") and were intended to provide a means of estimating the probability that a person who developed any of a series of radiation-related cancers, developed the cancer as a result of a specific radiation dose received before the onset of the cancer. The mandate included a provision for periodic updating of the tables. The motivation for the current revision reflects the availability of new data, especially on cancer incidence, and new methods of analysis, and the need for a more thorough treatment of uncertainty in the estimates than was attempted in the original tables.




Health Risks from Exposure to Low Levels of Ionizing Radiation


Book Description

This book is the seventh in a series of titles from the National Research Council that addresses the effects of exposure to low dose LET (Linear Energy Transfer) ionizing radiation and human health. Updating information previously presented in the 1990 publication, Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR V, this book draws upon new data in both epidemiologic and experimental research. Ionizing radiation arises from both natural and man-made sources and at very high doses can produce damaging effects in human tissue that can be evident within days after exposure. However, it is the low-dose exposures that are the focus of this book. So-called “late” effects, such as cancer, are produced many years after the initial exposure. This book is among the first of its kind to include detailed risk estimates for cancer incidence in addition to cancer mortality. BEIR VII offers a full review of the available biological, biophysical, and epidemiological literature since the last BEIR report on the subject and develops the most up-to-date and comprehensive risk estimates for cancer and other health effects from exposure to low-level ionizing radiation.




The Future of Low Dose Radiation Research in the United States


Book Description

Exposures at low doses of radiation, generally taken to mean doses below 100 millisieverts, are of primary interest for setting standards for protecting individuals against the adverse effects of ionizing radiation. However, there are considerable uncertainties associated with current best estimates of risks and gaps in knowledge on critical scientific issues that relate to low dose radiation. The Nuclear and Radiation Studies Board of the National Academies hosted the symposium on The Future of Low Dose Radiation Research in the United States on May 8 and 9, 2019. The goal of the symposium was to provide an open forum for a national discussion on the need for a long-term strategy to guide a low dose radiation research program in the United States. The symposium featured presentations on low dose radiation programs around the world, panel discussions with representatives from governmental and nongovernmental organizations about the need for a low dose radiation research program, reviews of low dose radiation research in epidemiology and radiation biology including new directions, and lessons to be learned from setting up large research programs in non-radiation research fields. This publication summarizes the presentation and discussion of the symposium.




Exposure Science in the 21st Century


Book Description

From the use of personal products to our consumption of food, water, and air, people are exposed to a wide array of agents each day-many with the potential to affect health. Exposure Science in the 21st Century: A Vision and A Strategy investigates the contact of humans or other organisms with those agents (that is, chemical, physical, and biologic stressors) and their fate in living systems. The concept of exposure science has been instrumental in helping us understand how stressors affect human and ecosystem health, and in efforts to prevent or reduce contact with harmful stressors. In this way exposure science has played an integral role in many areas of environmental health, and can help meet growing needs in environmental regulation, urban and ecosystem planning, and disaster management. Exposure Science in the 21st Century: A Vision and A Strategy explains that there are increasing demands for exposure science information, for example to meet needs for data on the thousands of chemicals introduced into the market each year, and to better understand the health effects of prolonged low-level exposure to stressors. Recent advances in tools and technologies-including sensor systems, analytic methods, molecular technologies, computational tools, and bioinformatics-have provided the potential for more accurate and comprehensive exposure science data than ever before. This report also provides a roadmap to take advantage of the technologic innovations and strategic collaborations to move exposure science into the future.




Adverse Reproductive Outcomes in Families of Atomic Veterans


Book Description

Over the past several decades, public concern over exposure to ionizing radiation has increased. This concern has manifested itself in different ways depending on the perception of risk to different individuals and different groups and the circumstances of their exposure. One such group are those U.S. servicemen (the "Atomic Veterans" who participated in the atmospheric testing of nuclear weapons at the Nevada Test Site or in the Pacific Proving Grounds, who served with occupation forces in or near Hiroshima and Nagasaki, or who were prisoners of war in or near those cities at the time of, or shortly after, the atomic bombings. This book addresses the feasibility of conducting an epidemiologic study to determine if there is an increased risk of adverse reproductive outcomes in the spouses, children, and grandchildren of the Atomic Veterans.




Health Effects of Exposure to Low Levels of Ionizing Radiation


Book Description

This book reevaluates the health risks of ionizing radiation in light of data that have become available since the 1980 report on this subject was published. The data include new, much more reliable dose estimates for the A-bomb survivors, the results of an additional 14 years of follow-up of the survivors for cancer mortality, recent results of follow-up studies of persons irradiated for medical purposes, and results of relevant experiments with laboratory animals and cultured cells. It analyzes the data in terms of risk estimates for specific organs in relation to dose and time after exposure, and compares radiation effects between Japanese and Western populations.




Sources, Effects and Risks of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2016 Report


Book Description

This report assesses the levels and effects of exposure to ionizing radiation. Scientific findings underpin radiation risk evaluation and international protection standards. This report comprises a report with two underpinning scientific annexes. The first annex recapitulates and clarifies the philosophy of science as well as the scientific knowledge for attributing observed health effects in individuals and populations to radiation exposure, and distinguishes between that and inferring risk to individuals and populations from an exposure. The second annex reviews the latest thinking and approaches to quantifying the uncertainties in assessments of risk from radiation exposure, and illustrates these approaches with application to examples that are highly pertinent to radiation protection.