Assessment of the Scientific Information for the Radiation Exposure Screening and Education Program


Book Description

The Radiation Exposure Compensation Act (RECA) was set up by Congress in 1990 to compensate people who have been diagnosed with specified cancers and chronic diseases that could have resulted from exposure to nuclear-weapons tests at various U.S. test sites. Eligible claimants include civilian onsite participants, downwinders who lived in areas currently designated by RECA, and uranium workers and ore transporters who meet specified residence or exposure criteria. The Health Resources and Services Administration (HRSA), which oversees the screening, education, and referral services program for RECA populations, asked the National Academies to review its program and assess whether new scientific information could be used to improve its program and determine if additional populations or geographic areas should be covered under RECA. The report recommends Congress should establish a new science-based process using a method called "probability of causation/assigned share" (PC/AS) to determine eligibility for compensation. Because fallout may have been higher for people outside RECA-designated areas, the new PC/AS process should apply to all residents of the continental US, Alaska, Hawaii, and overseas US territories who have been diagnosed with specific RECA-compensable diseases and who may have been exposed, even in utero, to radiation from U.S. nuclear-weapons testing fallout. However, because the risks of radiation-induced disease are generally low at the exposure levels of concern in RECA populations, in most cases it is unlikely that exposure to radioactive fallout was a substantial contributing cause of cancer.













Assessment of the Scientific Information for the Radiation Exposure Screening and Education Program


Book Description

The Radiation Exposure Compensation Act (RECA) was set up by Congress in 1990 to compensate people who have been diagnosed with specified cancers and chronic diseases that could have resulted from exposure to nuclear-weapons tests at various U.S. test sites. Eligible claimants include civilian onsite participants, downwinders who lived in areas currently designated by RECA, and uranium workers and ore transporters who meet specified residence or exposure criteria. The Health Resources and Services Administration (HRSA), which oversees the screening, education, and referral services program for RECA populations, asked the National Academies to review its program and assess whether new scientific information could be used to improve its program and determine if additional populations or geographic areas should be covered under RECA. The report recommends Congress should establish a new science-based process using a method called "probability of causation/assigned share" (PC/AS) to determine eligibility for compensation. Because fallout may have been higher for people outside RECA-designated areas, the new PC/AS process should apply to all residents of the continental US, Alaska, Hawaii, and overseas US territories who have been diagnosed with specific RECA-compensable diseases and who may have been exposed, even in utero, to radiation from U.S. nuclear-weapons testing fallout. However, because the risks of radiation-induced disease are generally low at the exposure levels of concern in RECA populations, in most cases it is unlikely that exposure to radioactive fallout was a substantial contributing cause of cancer.




A Review of the Draft Report of the NCI-CDC Working Group to Revise the 1985 Radioepidemiological Tables


Book Description

The National Research Council was asked by the Centers for Disease Control and Prevention (CDC) to review the draft report of the National Cancer Institute (NCI)-CDC's working group charged with revising the 1985 radioepidemiological tables. To this end, a subcommittee was formed consisting of members of the Council's Committee on an Assessment of the Centers for Disease Control and Prevention Radiation Programs and other experts. The original tables were mandated under Public Law 97-414 (the "Orphan Drug Act") and were intended to provide a means of estimating the probability that a person who developed any of a series of radiation-related cancers, developed the cancer as a result of a specific radiation dose received before the onset of the cancer. The mandate included a provision for periodic updating of the tables. The motivation for the current revision reflects the availability of new data, especially on cancer incidence, and new methods of analysis, and the need for a more thorough treatment of uncertainty in the estimates than was attempted in the original tables.




The Future of Low Dose Radiation Research in the United States


Book Description

Exposures at low doses of radiation, generally taken to mean doses below 100 millisieverts, are of primary interest for setting standards for protecting individuals against the adverse effects of ionizing radiation. However, there are considerable uncertainties associated with current best estimates of risks and gaps in knowledge on critical scientific issues that relate to low dose radiation. The Nuclear and Radiation Studies Board of the National Academies hosted the symposium on The Future of Low Dose Radiation Research in the United States on May 8 and 9, 2019. The goal of the symposium was to provide an open forum for a national discussion on the need for a long-term strategy to guide a low dose radiation research program in the United States. The symposium featured presentations on low dose radiation programs around the world, panel discussions with representatives from governmental and nongovernmental organizations about the need for a low dose radiation research program, reviews of low dose radiation research in epidemiology and radiation biology including new directions, and lessons to be learned from setting up large research programs in non-radiation research fields. This publication summarizes the presentation and discussion of the symposium.




Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests


Book Description

In 1997, after more than a decade of research, the National Cancer Institute (NCI) released a report which provided their assessment of radiation exposures that Americans may have received from radioactive iodine released from the atomic bomb tests conducted in Nevada during the 1950s and early 1960s. This book provides an evaluation of the soundness of the methodology used by the NCI study to estimate: Past radiation doses. Possible health consequences of exposure to iodine-131. Implications for clinical practice. Possible public health strategies--such as systematic screening for thyroid cancer--to respond to the exposures. In addition, the book provides an evaluation of the NCI estimates of the number of thyroid cancers that might result from the nuclear testing program and provides guidance on approaches the U.S. government might use to communicate with the public about Iodine-131 exposures and health risks.




Health Risks from Exposure to Low Levels of Ionizing Radiation


Book Description

This book is the seventh in a series of titles from the National Research Council that addresses the effects of exposure to low dose LET (Linear Energy Transfer) ionizing radiation and human health. Updating information previously presented in the 1990 publication, Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR V, this book draws upon new data in both epidemiologic and experimental research. Ionizing radiation arises from both natural and man-made sources and at very high doses can produce damaging effects in human tissue that can be evident within days after exposure. However, it is the low-dose exposures that are the focus of this book. So-called “late” effects, such as cancer, are produced many years after the initial exposure. This book is among the first of its kind to include detailed risk estimates for cancer incidence in addition to cancer mortality. BEIR VII offers a full review of the available biological, biophysical, and epidemiological literature since the last BEIR report on the subject and develops the most up-to-date and comprehensive risk estimates for cancer and other health effects from exposure to low-level ionizing radiation.