Associahedra, Tamari Lattices and Related Structures


Book Description

Tamari lattices originated from weakenings or reinterpretations of the familar associativity law. This has been the subject of Dov Tamari's thesis at the Sorbonne in Paris in 1951 and the central theme of his subsequent mathematical work. Tamari lattices can be realized in terms of polytopes called associahedra, which in fact also appeared first in Tamari's thesis. By now these beautiful structures have made their appearance in many different areas of pure and applied mathematics, such as algebra, combinatorics, computer science, category theory, geometry, topology, and also in physics. Their interdisciplinary nature provides much fascination and value. On the occasion of Dov Tamari's centennial birthday, this book provides an introduction to topical research related to Tamari's work and ideas. Most of the articles collected in it are written in a way accessible to a wide audience of students and researchers in mathematics and mathematical physics and are accompanied by high quality illustrations.




Mathematical Music Theory: Algebraic, Geometric, Combinatorial, Topological And Applied Approaches To Understanding Musical Phenomena


Book Description

Questions about variation, similarity, enumeration, and classification of musical structures have long intrigued both musicians and mathematicians. Mathematical models can be found from theoretical analysis to actual composition or sound production. Increasingly in the last few decades, musical scholarship has incorporated modern mathematical content. One example is the application of methods from Algebraic Combinatorics, or Topology and Graph Theory, to the classification of different musical objects. However, these applications of mathematics in the understanding of music have also led to interesting open problems in mathematics itself.The reach and depth of the contributions on mathematical music theory presented in this volume is significant. Each contribution is in a section within these subjects: (i) Algebraic and Combinatorial Approaches; (ii) Geometric, Topological, and Graph-Theoretical Approaches; and (iii) Distance and Similarity Measures in Music.







Lattice Theory: Special Topics and Applications


Book Description

George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, in two volumes, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This second volume is divided into ten chapters contributed by K. Adaricheva, N. Caspard, R. Freese, P. Jipsen, J.B. Nation, N. Reading, H. Rose, L. Santocanale, and F. Wehrung.




Associahedra, Tamari Lattices and Related Structures


Book Description

Tamari lattices originated from weakenings or reinterpretations of the familar associativity law. This has been the subject of Dov Tamari's thesis at the Sorbonne in Paris in 1951 and the central theme of his subsequent mathematical work. Tamari lattices can be realized in terms of polytopes called associahedra, which in fact also appeared first in Tamari's thesis. By now these beautiful structures have made their appearance in many different areas of pure and applied mathematics, such as algebra, combinatorics, computer science, category theory, geometry, topology, and also in physics. Their interdisciplinary nature provides much fascination and value. On the occasion of Dov Tamari's centennial birthday, this book provides an introduction to topical research related to Tamari's work and ideas. Most of the articles collected in it are written in a way accessible to a wide audience of students and researchers in mathematics and mathematical physics and are accompanied by high quality illustrations.




Organized Time


Book Description

Organized Time is the first attempt to unite theories of harmony, rhythm and meter, and form under a common idea of structured time. Building off of recent advances in music theory in essential subfields-rhythmic theory, tonal structure, and the theory of musical form--author Jason Yust demonstrates that tonal music exhibits similar hierarchical organization in each of these dimensions. Yust develops a network model for temporal structure with an application of mathematical graph theory, which leads ultimately to musical applications of a multi-dimensional polytope called the associahedron. A wealth of analytical examples includes not only the familiar tonal canon-J.S. Bach, Mozart, Schumann--but also lesser known masters of the musical Enlightenment such as C.P.E. and J.C. Bach, Boccherini, and Johann Gottlieb Graun. Yust's approach has wide-ranging ramifications across music theory, enabling new approaches to musical closure, hypermeter, formal function, syncopation, and rhythmic dissonance, as well as historical observations about the development of sonata form and the innovations of Haydn and Beethoven. Making a forceful argument for the independence of musical modalities and for a multivalent approach to music analysis, Organized Time establishes the aesthetic importance of structural disjunction, the conflict of structure in different modalities, in numerous analytical contexts.




Recent Advances in Diffeologies and Their Applications


Book Description

This volume contains the proceedings of the AMS-EMS-SMF Special Session on Recent Advances in Diffeologies and Their Applications, held from July 18–20, 2022, at the Université de Grenoble-Alpes, Grenoble, France. The articles present some developments of the theory of diffeologies applied in a broad range of topics, ranging from algebraic topology and higher homotopy theory to integrable systems and optimization in PDE. The geometric framework proposed by diffeologies is known to be one of the most general approaches to problems arising in several areas of mathematics. It can adapt to many contexts without major technical difficulties and produce examples inaccessible by other means, in particular when studying singularities or geometry in infinite dimension. Thanks to this adaptability, diffeologies appear to have become an interesting and useful language for a growing number of mathematicians working in many different fields. Some articles in the volume also illustrate some recent developments of the theory, which makes it even more deep and useful.




Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics


Book Description

This book is dedicated to the life and work of the mathematician Joachim Lambek (1922–2014). The editors gather together noted experts to discuss the state of the art of various of Lambek’s works in logic, category theory, and linguistics and to celebrate his contributions to those areas over the course of his multifaceted career. After early work in combinatorics and elementary number theory, Lambek became a distinguished algebraist (notably in ring theory). In the 1960s, he began to work in category theory, categorical algebra, logic, proof theory, and foundations of computability. In a parallel development, beginning in the late 1950s and for the rest of his career, Lambek also worked extensively in mathematical linguistics and computational approaches to natural languages. He and his collaborators perfected production and type grammars for numerous natural languages. Lambek grammars form an early noncommutative precursor to Girard’s linear logic. In a surprising development (2000), he introduced a novel and deeper algebraic framework (which he called pregroup grammars) for analyzing natural language, along with algebraic, higher category, and proof-theoretic semantics. This book is of interest to mathematicians, logicians, linguists, and computer scientists.




Graph-Theoretic Concepts in Computer Science


Book Description

This book constitutes the revised papers of the 46th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2020, held in Leeds, UK, in June 2020. The workshop was held virtually due to the COVID-19 pandemic. The 32 full papers presented in this volume were carefully reviewed and selected from 94 submissions. They cover a wide range of areas, aiming to present emerging research results and to identify and explore directions of future research of concepts on graph theory and how they can be applied to various areas in computer science.