Organocatalysis


Book Description

Organocatalysis is considered today one of the three pillars in asymmetric catalysis, along with biocatalysis and organometallic catalysis. The current book gives an overview of the new reactions, the catalysts and their activation strategies reported in recent years. In addition, the applications of organocatalysis in total synthesis, radical reactions, flow chemistry and industrial practice are discussed.




Economic Synthesis of Heterocycles


Book Description

Heterocycle synthesis is one of the largest areas of modern organic chemistry. Heterocycles have a broad range of applications including pharmaceuticals, agrochemicals and dyes, and are the core structure to around 90% of naturally-occurring molecules. Transition metal catalysts have become favoured in heterocycle synthesis, not least because of their low cost, but also due to their relatively low environmental toxicity and biocompatibility. This book presents an overview of the state-of-the-art in transition metal catalysis for heterocycle synthesis. Each metal is discussed in turn, presenting a comprehensive source of information on the use of zinc, iron, copper, cobalt, manganese, and nickel in a sustainable and economic manner. Referencing the latest primary literature, and authored by active researchers in the field, this book is a must-have resource for anyone wishing to undertake an economic and sustainable approach to heterocycle synthesis.




Asymmetric Organocatalysis


Book Description

Asymmetric Organocatalysis Comprehensive resource on the latest and most important developments in the highly vivid field of asymmetric organocatalysis The book provides a comprehensive overview of the most important advancements in the field of asymmetric organocatalysis that have occurred within the last decade. It presents valuable examples of newly developed synthetic methodologies based on various organocatalytic activation modes. Special emphasis is given to strategies where organocatalysis is expanding its potential by pushing the boundaries and founding new synergistic interactions with other fields of synthetic chemistry, such as metal catalysis, photocatalysis, and biocatalysis. The application of different concepts (such as vinylogy, dearomatization, or cascade reactivity), resulting in the development of new functionalization strategies, is also discussed. Sample topics covered within the book include: New developments in enantioselective Brønsted acid catalysis with strong hydrogen-bond donors Asymmetric phase-transfer catalysis, from classical applications to new concepts Halogen-bonding organocatalysis Asymmetric electrochemical organocatalysis and synergistic organo-organocatalysis Immobilized organocatalysts for enantioselective continuous flow processes Mechanochemistry and high-pressure techniques in asymmetric organocatalysis Useful tools in elucidation of organocatalytic reaction mechanisms With an overall focus on new reactions and catalysts, this two-volume work is an indispensable source for everyone working in the field of asymmetric organocatalysis.




Organocatalysis


Book Description

Organocatalysis are an important tool for greener catalytic processes due to the lack of precious metals used. This book explores different organocatalysts and their use in synthesis. Topics covered include zwitterionic imidazolium salt catalysts, asymmetric catalysts in aqueous media, beaker yeast catalysis, organocatalysts for Aldol and Michael reactions, amino acid-based organocatalysts, and Brönsted acidic surfactant organocatalysts.




Asymmetric Organocatalysis


Book Description

Annotation Kerstin Etzenbach-Effers, Albrecht Berkessel: Non-Covalent Organocatalysis Based on Hydrogen Bonding: Elucidation of Reaction Paths by Computational Methods.- Petri M. Pihko, Inkeri Majander, and Anniina Erkkilä: Enamine Catalysis.- Jennifer L. Moore, Tomislav Rovis: Lewis Base Catalysts 6: Carbene Catalysts.- Amal Ting, Jennifer M. Goss, Nolan T. McDougal, and Scott E. Schaus: Brønsted Base Catalysts.- O. Andrea Wong, Yian Shi: Chiral Ketone and Iminium Catalysts for Olefin Epoxidation.- Alan C. Spivey, Stellios Arseniyadis: Amine, Alcohol and Phosphine Catalysts for Acyl Transfer Reactions.- John B. Brazier, Nicholas C.O. Tomkinson: Lewis Base Catalysts 2 Secondary and Primary Amine Catalysts for Iminium Catalysis.- Oksana Sereda, Sobia Tabassum, and René Wilhelm: Lewis Acid Organocatalysts.- Daniela Kampen, Corinna M. Reisinger, and Benjamin List: Chiral Bronsted Acids for C Organocatalysis.




Axially Chiral Compounds


Book Description

Axially Chiral Compounds Explore this comprehensive and current volume summarizing the characteristics, synthesis, and applications of axial chirality Appearing widely in natural products, biologically active molecules, asymmetric chemistry, and material science, axially chiral motifs constitute the core backbones of the majority of chiral ligands and organocatalysts in asymmetric catalysis. In a new work of particular relevance to synthetic chemists, Axially Chiral Compounds: Asymmetric Synthesis and Applications delivers a clearly structured and authoritative volume covering the classification, characteristics, synthesis, and applications of axial chirality. A must read for every synthetic chemist practicing today, the book follows the development history, research status, and applications of axial chirality. An introductory chapter familiarizes the reader with foundational material before the distinguished authors describe the different classes and the synthesis of axial chiral compounds used in asymmetric synthesis. The book concludes with a focus on the applications of chiral ligands, chiral catalysts, and materials. Readers will also benefit from the inclusion of: A thorough introduction to asymmetric synthesis, including biaryls atropisomers, heterobiaryls atropisomers, and non-biaryls atropisomers Explorations of chiral allene, spiro skeletons, and natural products Practical discussions of asymmetric transformation, chiral ligands, and chiral catalysts An examination of miscellaneous applications of axially chiral compounds Perfect for organic chemists, chemists working with or on organometallics, catalytic chemists, and materials scientists, Axially Chiral Compounds: Asymmetric Synthesis and Applications will also earn a place in the libraries of natural products chemists who seek a one-stop reference for compounds exhibiting axial chirality.




Organocatalysis


Book Description

This book provides an excellent overview on state-of-the-art of modern organocatalysis. It presents the contributions from leading experts, with backgrounds in academia and industry, to an Ernst Schering Research Foundation Symposium held in April 2007. It will be of interest to those who want a general overview of the topic, but also to those who want to learn more about the state-of-the-art, current trends and perspectives in this highly dynamic field of research.




Catalytic Asymmetric Synthesis


Book Description

Catalytic Asymmetric Synthesis Seminal text presenting detailed accounts of the most important catalytic asymmetric reactions known today This book covers the preparation of enantiomerically pure or enriched chemical compounds by use of chiral catalyst molecules. While reviewing the most important catalytic methods for asymmetric organic synthesis, this book highlights the most important and recent developments in catalytic asymmetric synthesis. Edited by two well-qualified experts, sample topics covered in the work include: Metal catalysis, organocatalysis, photoredox catalysis, enzyme catalysis C–H bond functionalization reactions Carbon–carbon bond formation reactions, carbon–halogen bond formation reactions, hydrogenations, polymerizations, flow reactions Axially chiral compounds Retaining the best of its predecessors but now thoroughly up to date with the important and recent developments in catalytic asymmetric synthesis, the 4th edition of Catalytic Asymmetric Synthesis serves as an excellent desktop reference and text for researchers and students, from upper-level undergraduates all the way to experienced professionals in industry or academia.




Dienamine Catalysis for Organic Synthesis


Book Description

In the last decade a new era in asymmetric catalysis has been realised by the discovery of L-proline induced chiral enamines from carbonyls. Inspired by this, researchers have developed many other primary catalytic species in situ, more recently secondary catalytic species such as aminals have been identified for use in asymmetric synthesis. High-yielding asymmetric synthesis of bioactive and natural products through mild catalysis is an efficient approach in reaction engineering. In the early days, synthetic chemists mainly focused on the synthesis of complex molecules, with less attention on the reaction efficiency and eco-friendly conditions. Recent investigations have been directed towards the development of atom economy, eco-friendly and enantioselective synthesis for more targeted and efficient synthesis. Building on the momentum of this rapidly expanding research area, Dienamine catalysis for organic synthesis will provide a comprehensive introduction, from the preformed species, in situ generation and onto their applications in the synthesis of bioactive molecules and natural products.