Reliability Problems: General Principles and Applications in Mechanics of Solids and Structures


Book Description

The aim of this volume is to present to researchers and engineers working on problems concerned with the mechanics of solids and structures, the current state of the development and application to procedures for assessing the reliability of a system. Particular attention is paid to their use in the analysis of complex engineering systems. The topics covered reflect the need to integrate, within the overall methodology, statistical methods for dealing with uncertain parameters and random excitation with the development of a suitable safety indexes and design codes. The basic principles of reliability theory, together with current standard methodology, including a consideration of the operational, economic and legal aspects of reliability assurance, is reviewed, together with an introduction to new developments, such as the application of expert systems technology. Damage accumulation predictions, with applications in seismic engineering are also covered.







Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications


Book Description

Asymptotic methods are of great importance for practical applications, especially in dealing with boundary value problems for small stochastic perturbations. This book deals with nonlinear dynamical systems perturbed by noise. It addresses problems in which noise leads to qualitative changes, escape from the attraction domain, or extinction in population dynamics. The most likely exit point and expected escape time are determined with singular perturbation methods for the corresponding Fokker-Planck equation. The authors indicate how their techniques relate to the Itô calculus applied to the Langevin equation. The book will be useful to researchers and graduate students.




IUTAM Symposium on Nonlinearity and Stochastic Structural Dynamics


Book Description

Nonlinearity and stochastic structural dynamics is of common interest to engineers and applied scientists belonging to many disciplines. Recent research in this area has been concentrated on the response and stability of nonlinear mechanical and structural systems subjected to random escitation. Simultaneously the focus of research has also been directed towards understanding intrinsic nonlinear phenomena like bifurcation and chaos in deterministic systems. These problems demand a high degree of sophistication in the analytical and numerical approaches. At the same time they arise from considerations of nonlinear system response to turbulence, earthquacke, wind, wave and guidancy excitations. The topic thus attracts votaries of both analytical rigour and practical applications. This books gives important and latest developments in the field presenting in a coherent fashion the research findings of leading international groups working in the area of nonlinear random vibration and chaos.







Modern Stochastics and Applications


Book Description

This volume presents an extensive overview of all major modern trends in applications of probability and stochastic analysis. It will be a great source of inspiration for designing new algorithms, modeling procedures and experiments. Accessible to researchers, practitioners, as well as graduate and postgraduate students, this volume presents a variety of new tools, ideas and methodologies in the fields of optimization, physics, finance, probability, hydrodynamics, reliability, decision making, mathematical finance, mathematical physics and economics. Contributions to this Work include those of selected speakers from the international conference entitled “Modern Stochastics: Theory and Applications III,” held on September 10 –14, 2012 at Taras Shevchenko National University of Kyiv, Ukraine. The conference covered the following areas of research in probability theory and its applications: stochastic analysis, stochastic processes and fields, random matrices, optimization methods in probability, stochastic models of evolution systems, financial mathematics, risk processes and actuarial mathematics and information security.







An Introduction to Continuous-Time Stochastic Processes


Book Description

This concisely written book is a rigorous and self-contained introduction to the theory of continuous-time stochastic processes. Balancing theory and applications, the authors use stochastic methods and concrete examples to model real-world problems from engineering, biomathematics, biotechnology, and finance. Suitable as a textbook for graduate or advanced undergraduate courses, the work may also be used for self-study or as a reference. The book will be of interest to students, pure and applied mathematicians, and researchers or practitioners in mathematical finance, biomathematics, physics, and engineering.




Probabilistic Mechanics & Structural Reliability


Book Description

Contains three keynote papers and some 230 contributed four-page papers from the August 1996 conference, examining all aspects of probabalistic mechanics and structural reliability regarding assessment and design of structural, mechanical, marine, aerospace, geotechnical, and environmental systems. Emphasis is on concepts and methods of probability in the design of engineering systems, with particular focus on progress in stochastic mechanics in earthquake engineering, structural dynamics, and finite element methods. Annotation copyright by Book News, Inc., Portland, OR




Graduate Studies


Book Description