Asymptotic Methods in Resonance Analytical Dynamics


Book Description

Asymptotic Methods in Resonance Analytical Dynamics presents new asymptotic methods for the analysis and construction of solutions (mainly periodic and quasiperiodic) of differential equations with small parameters. Along with some background material and theory behind these methods, the authors also consider a variety of problems and applications in nonlinear mechanics and oscillation theory. The methods examined are based on two types: the generalized averaging technique of Krylov-Bogolubov and the numeric-analytical iterations of Lyapunov-Poincaré. This text provides a useful source of reference for postgraduates and researchers working in this area of applied mathematics.




Dynamical Systems and Control


Book Description

The 11th International Workshop on Dynamics and Control brought together scientists and engineers from diverse fields and gave them a venue to develop a greater understanding of this discipline and how it relates to many areas in science, engineering, economics, and biology. The event gave researchers an opportunity to investigate ideas and techniq







The Optimal Homotopy Asymptotic Method


Book Description

This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.




Qualitative Analysis of Set-Valued Differential Equations


Book Description

The book discusses set-valued differential equations defined in terms of the Hukuhara derivative. Focusing on equations with uncertainty, i.e., including an unknown parameter, it introduces a regularlization method to handle them. The main tools for qualitative analysis are the principle of comparison of Chaplygin – Wazhewsky, developed for the scalar, vector and matrix-valued Lyapunov functions and the method of nonlinear integral inequalities, which are used to establish existence, stability or boundedness. Driven by the question of how to model real processes using a set-valued of differential equations, the book lays the theoretical foundations for further study in this area. It is intended for experts working in the field of qualitative analysis of differential and other types of equations.




Nonlinear Dynamic in Engineering by Akbari-Ganji’S Method


Book Description

In the present book, attempts have been made to conquer the difficulty of solving nonlinear differential equations, especially the highly nonlinear ones. A convenient approach (AGM = Akbari-Ganjis method) has been proposed to solve all the existing nonlinear ordinary differential equations up to now. Here, all the existing nonlinear ODEs have been divided into some categories, and for each of them, an innovative technique has been introduced to find their exact solution. Moreover, a suitable technique has been proposed to evaluate the precision of the acquired solution, which can be utilized when there is not any exact solution and the problem is not solvable by numerical methods, such as some kinds of inverse problems. One of the significant nobilities of this book refers to the ability of AGM in solving partial differential equations in different aspectsfor instance, fluid mechanics, heat transfer, and vibration, as discussed in the sixth chapter. Eventually, we hope this book can be considered as a suitable guide for all the people who deal with nonlinear differential equations.




Mathematical Reviews


Book Description




Nonlinear Dynamics of Structures, Systems and Devices


Book Description

This first of three volumes from the inaugural NODYCON, held at the University of Rome, in February of 2019, presents papers devoted to Nonlinear Dynamics of Structures, Systems and Devices. The collection features both well-established streams of research as well as novel areas and emerging fields of investigation. Topics in Volume I include multi-scale dynamics: coexistence of multiple time/space scales, large system dynamics; dynamics of structures/industrial machines/equipment/facilities (e.g., cable transportation systems, suspension bridges, cranes, vehicles); nonlinear interactions: parametric vibrations with single/multi-frequency excitations, multiple external and autoparametric resonances in multi-dof systems; nonlinear system identification: parametric/nonparametric identification, data-driven identification; experimental dynamics: benchmark experiments, experimental methods, instrumentation techniques, measurements in harsh environments, experimental validation of nonlinear models; wave propagation, solitons, kinks, breathers; solution methods for pdes: Lie groups, Hirota’s method, perturbation methods, etc; nonlinear waves in media (granular materials, porous materials, materials with memory); composite structures: multi-layer, functionally graded, thermal loading; fluid/structure interaction; nonsmooth and retarded dynamics: systems with impacts, free play, stick-slip, friction hysteresis; nonlinear systems with time and/or space delays; stability of delay differential equations, differential-algebraic equations; space/time reduced-order modeling: enhanced discretization methods, center manifold reduction, nonlinear normal modes, normal forms; fractional-order systems; computational techniques: efficient algorithms, use of symbolic manipulators, integration of symbolic manipulation and numerical methods, use of parallel processors; and multibody dynamics: rigid and flexible multibody system dynamics, impact and contact mechanics, tire modeling, railroad vehicle dynamics, computational multibody dynamics.







Nonlinear Dynamics and Stochastic Mechanics


Book Description

Engineering systems have played a crucial role in stimulating many of the modern developments in nonlinear and stochastic dynamics. After 20 years of rapid progress in these areas, this book provides an overview of the current state of nonlinear modeling and analysis for mechanical and structural systems. This volume is a coherent compendium written by leading experts from the United States, Canada, Western and Eastern Europe, and Australia. The 22 articles describe the background, recent developments, applications, and future directions in bifurcation theory, chaos, perturbation methods, stochastic stability, stochastic flows, random vibrations, reliability, disordered systems, earthquake engineering, and numerics. The book gives readers a sophisticated toolbox that will allow them to tackle modeling problems in mechanical systems that use stochastic and nonlinear dynamics ideas. An extensive bibliography and index ensure this volume will remain a reference standard for years to come.