Asymptotic Statistics


Book Description

This book is an introduction to the field of asymptotic statistics. The treatment is both practical and mathematically rigorous. In addition to most of the standard topics of an asymptotics course, including likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures, the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, which gives the book one of its unifying themes. This entails mainly the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. Thus, even the standard subjects of asymptotic statistics are presented in a novel way. Suitable as a graduate or Master s level statistics text, this book will also give researchers an overview of the latest research in asymptotic statistics.




Asymptotic Techniques for Use in Statistics


Book Description

The use in statistical theory of approximate arguments based on such methods as local linearization (the delta method) and approxi mate normality has a long history. Such ideas play at least three roles. First they may give simple approximate answers to distributional problems where an exact solution is known in principle but difficult to implement. The second role is to yield higher-order expansions from which the accuracy of simple approximations may be assessed and where necessary improved. Thirdly the systematic development of a theoretical approach to statistical inference that will apply to quite general families of statistical models demands an asymptotic formulation, as far as possible one that will recover 'exact' results where these are available. The approximate arguments are developed by supposing that some defining quantity, often a sample size but more generally an amount of information, becomes large: it must be stressed that this is a technical device for generating approximations whose adequacy always needs assessing, rather than a 'physical' limiting notion. Of the three roles outlined above, the first two are quite close to the traditional roles of asymptotic expansions in applied mathematics and much ofthe very extensive literature on the asymptotic expansion of integrals and of the special functions of mathematical physics is quite directly relevant, although the recasting of these methods into a probability mould is quite often enlightening.




Techniques of Asymptotic Analysis


Book Description

"In this second part of Willie Sugg's history of Cambridgeshire cricket the author focuses on the first documented period of sustained success for a Cambridgeshire club - that of the Cambridge Cricket Club." (back cover) Part two of three.




Expansions and Asymptotics for Statistics


Book Description

Asymptotic methods provide important tools for approximating and analysing functions that arise in probability and statistics. Moreover, the conclusions of asymptotic analysis often supplement the conclusions obtained by numerical methods. Providing a broad toolkit of analytical methods, Expansions and Asymptotics for Statistics shows how asymptoti







Asymptotic Theory of Statistical Inference for Time Series


Book Description

The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.




Introduction to Asymptotic Methods


Book Description

Among the theoretical methods for solving many problems of applied mathematics, physics, and technology, asymptotic methods often provide results that lead to obtaining more effective algorithms of numerical evaluation. Presenting the mathematical methods of perturbation theory, Introduction to Asymptotic Methods reviews the most important m




Asymptotic Theory Of Quantum Statistical Inference: Selected Papers


Book Description

Quantum statistical inference, a research field with deep roots in the foundations of both quantum physics and mathematical statistics, has made remarkable progress since 1990. In particular, its asymptotic theory has been developed during this period. However, there has hitherto been no book covering this remarkable progress after 1990; the famous textbooks by Holevo and Helstrom deal only with research results in the earlier stage (1960s-1970s).This book presents the important and recent results of quantum statistical inference. It focuses on the asymptotic theory, which is one of the central issues of mathematical statistics and had not been investigated in quantum statistical inference until the early 1980s. It contains outstanding papers after Holevo's textbook, some of which are of great importance but are not available now.The reader is expected to have only elementary mathematical knowledge, and therefore much of the content will be accessible to graduate students as well as research workers in related fields. Introductions to quantum statistical inference have been specially written for the book. Asymptotic Theory of Quantum Statistical Inference: Selected Papers will give the reader a new insight into physics and statistical inference.




Asymptotic Approximations of Integrals


Book Description

Asymptotic Approximations of Integrals deals with the methods used in the asymptotic approximation of integrals. Topics covered range from logarithmic singularities and the summability method to the distributional approach and the Mellin transform technique for multiple integrals. Uniform asymptotic expansions via a rational transformation are also discussed, along with double integrals with a curve of stationary points. For completeness, classical methods are examined as well. Comprised of nine chapters, this volume begins with an introduction to the fundamental concepts of asymptotics, followed by a discussion on classical techniques used in the asymptotic evaluation of integrals, including Laplace's method, Mellin transform techniques, and the summability method. Subsequent chapters focus on the elementary theory of distributions; the distributional approach; uniform asymptotic expansions; and integrals which depend on auxiliary parameters in addition to the asymptotic variable. The book concludes by considering double integrals and higher-dimensional integrals. This monograph is intended for graduate students and research workers in mathematics, physics, and engineering.




Asymptotic Theory of Statistics and Probability


Book Description

This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.