Atmospheric Attenuation of Millimeter and Submillimeter Waves


Book Description

Atmospheric attenuation of millimeter and submillimeter waves is calculated for clear, fog, cloud and rain atmospheres. The frequency range considered is 1-1000 GHz. The clear atmospheres transmission spectra is calculated by a computer efficient algorithm of AFGL's HITRAN code. This new code is called FASCODE-1. The hydrometeor attenuation of fog, clouds and rain (precipitation), calculated by Mie scattering is addend to FASCODE-1. Models of fog, clouds and rain typical of mid-latitude temperate regions are used in calculations of transmission and attenuation.










Sensor and Data Fusion


Book Description

This book illustrates the benefits of sensor fusion by considering the characteristics of infrared, microwave, and millimeter-wave sensors, including the influence of the atmosphere on their performance. Applications that benefit from this technology include: vehicular traffic management, remote sensing, target classification and tracking- weather forecasting- military and homeland defense. Covering data fusion algorithms in detail, Klein includes a summary of the information required to implement each of the algorithms discussed, and outlines system application scenarios that may limit sensor size but that require high resolution data.




Research in Progress


Book Description

Vols. for 1977- consist of two parts: Chemistry, biological sciences, engineering sciences, metallurgy and materials science (issued in the spring); and Physics, electronics, mathematics, geosciences (issued in the fall).




Research in Progress


Book Description




Advances in Sensing with Security Applications


Book Description

The chapters in this volume were presented at the July 2005NATO Advanced Study Institute on Advances in Sensing with Security App- cations. The conference was held at the beautiful Il Ciocco resort near Lucca, in the glorious Tuscany region of northern Italy. Once again we gathered at this idyllic spot to explore and extend the reciprocity between mathematics and engineering. The dynamic interaction - tween world-renowned scientists from the usually disparate communities of pure mathematicians and applied scientists which occurred at our six previous ASI’s continued at this meeting. The fusion of basic ideas in mathematics, biology, and chemistry with ongoing improvements in hardware and computation o?ers the promise of much more sophisticated and accurate sensing capabilities than c- rently exist. Coupled with the dramatic rise in the need for surveillance in innumerable aspects of our daily lives, brought about by hostile acts deemed unimaginable only a few short years ago, the time was right for scientists in the diverse areas of sensing and security to join together in a concerted e?ort to combat the new brands of terrorism. This ASI was one important initial step. To encompass the diverse nature of the s- ject and the varied backgrounds of the anticipated participants, the ASI was divided into three broadly de?ned but interrelated areas: the - creasing need for fast and accurate sensing, the scienti?c underpinnings of the ongoing revolution in sensing, and speci?c sensing algorithms and techniques. The ASI brought together world leaders from academia, government, andindustry,withextensivemultidisciplinarybackgroundsevidencedby theirresearchandparticipationinnumerousworkshopsandconferences.







Special Report


Book Description