Atmospheric Effects of Aviation


Book Description

Aviation is an integral part of the global transportation network, and the number of flights worldwide is expected to grow rapidly in the coming decades. Yet, the effects that subsonic aircraft emissions may be having upon atmospheric composition and climate are not fully understood. To study such issues, NASA sponsors the Atmospheric Effects of Aviation Program (AEAP). The NRC Panel on Atmospheric Effects of Aviation is charged to evaluate AEAP, and in this report, the panel is focusing on the subsonic assessment (SASS) component of the program. This evaluation of SASS/AEAP was based on the report Atmospheric Effects of Subsonic Aircraft: Interim Assessment Report of the Advanced Sub-sonic Technology Program, on a strategic plan developed by SASS managers, and on other relevant documents.







Atmospheric Effects of Subsonic Aircraft


Book Description

This first interim assessment of the subsonic assessment (SASS) project attempts to summarize concisely the status of our knowledge concerning the impacts of present and future subsonic aircraft fleets. It also highlights the major areas of scientific uncertainty, through review of existing data bases and model-based sensitivity studies. In view of the need for substantial improvements in both model formulations and experimental databases, this interim assessment cannot provide confident numerical predictions of aviation impacts. However, a number of quantitative estimates are presented, which provide some guidance to policy makers. Friedl, Randall R. (Editor) Goddard Space Flight Center ATMOSPHERIC EFFECTS; SUBSONIC AIRCRAFT; PREDICTIONS; ESTIMATES; DATA BASES; NUMERICAL ANALYSIS; SENSITIVITY; POLICIES...







A Review of NASA's 'Atmospheric Effects of Stratospheric Aircraft' Project


Book Description

The NRC Panel on the Atmospheric Effects of Aviation (PAEAN) was established to provide guidance to NASA's Atmospheric Effects of Aviation Program (AEAP) by evaluating the appropriateness of the program's research plan, appraising the project-sponsored results relative to the current state of scientific knowledge, identifying key scientific uncertainties, and suggesting research activities likely to reduce those uncertainties. Over the last few years, the panel has written periodic reviews of both the subsonic aviation (Subsonic Assessment-SASS) and the supersonic aviation (Atmospheric Effects of Stratospheric Aircraft-AESA) components of AEAP, including: An Interim Review of the Subsonic Assessment Project (1997); An Interim Assessment of AEAP's Emissions Characterization and Near-Field Interactions Elements (1997); An Interim Review of the AESA Project: Science and Progress (1998); Atmospheric Effects of Aviation: A Review of NASA's Subsonic Assessment Project (1998). This report constitutes the final review of AESA and will be the last report written by this panel. The primary audience for these reports is the program managers and scientists affiliated with AEAP, although in some cases the topics discussed are of interest to a wider audience.













Model Assessment of the Impact on Ozone of Subsonic and Supersonic Aircraft


Book Description

This is the final report for work performed between June 1999 through May 2000. The work represents continuation of the previous contract which encompasses five areas: (1) continued refinements and applications of the 2-D chemistry-transport model (CTM) to assess the ozone effects from aircraft operation in the stratosphere; (2) studying the mechanisms that determine the evolution of the sulfur species in the aircraft plume and how such mechanisms affect the way aircraft sulfur emissions should be introduced into global models; (3) the development of diagnostics in the AER 3-wave interactive model to assess the importance of the dynamics feedback and zonal asymmetry in model prediction of ozone response to aircraft operation; (4) the development of a chemistry parameterization scheme in support of the global modeling initiative (GMI); and (5) providing assessment results for preparation of national and international reports which include the "Aviation and the Global Atmosphere" prepared by the Intergovernmental Panel on Climate Change, "Assessment of the effects of high-speed aircraft in the stratosphere: 1998" by NASA, and the "Model and Measurements Intercomparison II" by NASA. Part of the work was reported in the final report. We participated in the SAGE III Ozone Loss and Validation Experiment (SOLVE) campaign and we continue with our analyses of the data.Ko, Malcolm and Weisenstein, Debra and Danilin, Michael and Scott, Courtney and Shia, Run-LieGoddard Space Flight CenterCLIMATE CHANGE; DIAGNOSIS; MATHEMATICAL MODELS; OZONE; PARAMETERIZATION; TWO DIMENSIONAL MODELS; ASYMMETRY; FEEDBACK; FLIGHT OPERATIONS; LOSSES; PLUMES; STRATOSPHERE; SULFUR; SUPERSONIC AIRCRAFT