Handbook of Atmospheric Electrodynamics (1995)


Book Description

The participation of such diverse scientific and technical disciplines as meteorology, astronomy, atmospheric electricity, ionospheric and magnetospheric physics, electromagnetic wave propagation, and radio techniques in the research of atmospherics means that results are published in scientific papers widely spread throughout the literature. This Handbook collects the latest knowledge on atmospherics and presents it in two volumes. Each chapter is written by an expert in his or her field. Topics include the physics of thunderclouds, thunder, global atmospheric electric currents, biological aspects of sferics, and various space techniques for detecting lightning within our own atmosphere as well as in the atmospheres of other planets. Up-to-date applications and methodology are detailed. Volumes I and II offer a comprehensive discussion that together will serve as an important resource for practitioners, professionals, and students alike.




Handbook of Atmospheric Electrodynamics


Book Description

The participation of such diverse scientific and technical disciplines as meteorology, astronomy, atmospheric electricity, ionospheric and magnetospheric physics, electromagnetic wave propagation, and radio techniques in the research of atmospherics means that results are published in scientific papers widely spread throughout the literature. This Handbook collects the latest knowledge on atmospherics and presents it in two volumes. Each chapter is written by an expert in his or her field. Topics include the physics of thunderclouds, thunder, global atmospheric electric currents, biological aspects of sferics, and various space techniques for detecting lightning within our own atmosphere as well as in the atmospheres of other planets. Up-to-date applications and methodology are detailed. Volumes I and II offer a comprehensive discussion that together will serve as an important resource for practitioners, professionals, and students alike.




Handbook of Atmospheric Electrodynamics, Volume I


Book Description

The participation of such diverse scientific and technical disciplines as meteorology, astronomy, atmospheric electricity, ionospheric and magnetospheric physics, electromagnetic wave propagation, and radio techniques in the research of atmospherics means that results are published in scientific papers widely spread throughout the literature. This Handbook collects the latest knowledge on atmospherics and presents it in two volumes. Each chapter is written by an expert in his or her field. Topics include the physics of thunderclouds, thunder, global atmospheric electric currents, biological aspects of sferics, and various space techniques for detecting lightning within our own atmosphere as well as in the atmospheres of other planets. Up-to-date applications and methodology are detailed. Volumes I and II offer a comprehensive discussion that together will serve as an important resource for practitioners, professionals, and students alike.




Atmospheric Electrodynamics


Book Description

This book resulted from lectures which I gave at the Universities of Kyoto, Cologne, and Bonn. Its objective is to summarize in a unifying way two other wise rather separately treated subjects of atmospheric electrodynamics: elec tric fields of atmospheric origin, in particular thunderstorm phenomena and related problems on the one hand, and magnetic fields, in particular those which are associated with electric currents of upper atmospheric origin, on the other. Geoelectricity and geomagnetism were not always considered as be longing to quite different fields of geophysics. On the contrary, they were re cognized by the physicists of the 19th and the beginning of the 20th century as two manifestations of one and the same physical phenomenon, which we pre sently refer to as electromagnetic fields. This can still be visualized from the choice of names of scientific journals. For instance, there still exists the Japanese Journal of Geomagnetism and Geoelectricity, and the former name of the present American Journal of Geophysical Research was Terrestrial Magnetism and Atmospheric Electricity. Whereas geomagnetism became the root of modern magnetospheric phys ics culminating in the space age exploration of the earth's environment, geo electricity evolved as a step-child of meteorology. The reason for this is clear. The atmospheric electric field observed on the ground reflects merely the local weather with all its frustrating unpredictability. The variable part of the geomagnetic field, however, is a useful indicator of ionospheric and magneto spheric electric current systems.







The Earth's Ionosphere


Book Description

The Earth's Ionosphere: Plasma Physics and Electrodynamics emphasizes the study of plasma physics and electrodynamics of the ionosphere, including many aeronomical influences. The ionosphere is somewhat of a battleground between the earth's neutral atmosphere and the sun's fully ionized atmosphere, in which the earth is embedded. One of the challenges of ionosphere research is to know enough about these two vast fields of research to make sense out of ionospheric phenomena. This book provides insights into how these competing sources of mass, momentum, and energy compete for control of the ionosphere. Some of the topics discussed include the fundamentals of ionospheric plasma dynamics; equatorial plasma instabilities; high-latitude electrodynamics; and instabilities and structure in the high-latitude ionosphere. Throughout this text only the region above 90 km are discussed, ignoring the D region entirely. This publication is a good source of information for students and individuals conducting research on earth's ionosphere.




Middle Atmosphere Program


Book Description




Magnetospheric Current Systems


Book Description

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 118. The magnetosphere is an open system that interacts with the solar wind. In this system, solar wind energy continuously permeates different regions of the magnetosphere through electromagnetic processes, which we can well describe in terms of current systems. In fact, our ability to use various methods to study magnetospheric current systems has recently prompted significant progress in our understanding of the phenomenon. Unprecedented coverage of satellite and ground?]based observations has advanced global approaches to magnetospheric current systems, whereas advanced measurements of electromagnetic fields and particles have brought new insights about micro?]processes. Increased computer capabilities have enabled us to simulate the dynamics not only of the terrestrial magnetosphere but also the magnetospheres of other planets. Based on such developments, the present volume revisits outstanding issues about magnetospheric current systems.