Foundations of Atmospheric Remote Sensing


Book Description

Theoretical foundations of atmospheric remote sensing are electromagnetic theory, radiative transfer and inversion theory. This book provides an overview of these topics in a common context, compile the results of recent research, as well as fill the gaps, where needed. The following aspects are covered: principles of remote sensing, the atmospheric physics, foundations of the radiative transfer theory, electromagnetic absorption, scattering and propagation, review of computational techniques in radiative transfer, retrieval techniques as well as regularization principles of inversion theory. As such, the book provides a valuable resource for those who work with remote sensing data and want to get a broad view of theoretical foundations of atmospheric remote sensing. The book will be also useful for students and researchers working in such diverse fields like inverse problems, atmospheric physics, electromagnetic theory, and radiative transfer.







Microwave Propagation and Remote Sensing


Book Description

Because prevailing atmospheric/troposcopic conditions greatly influence radio wave propagation above 10 GHz, the unguided propagation of microwaves in the neutral atmosphere can directly impact many vital applications in science and engineering. These include transmission of intelligence, and radar and radiometric applications used to probe the atmosphere, among others. Where most books address either one or the other, Microwave Propagation and Remote Sensing: Atmospheric Influences with Models and Applications melds coverage of these two subjects to help readers develop solutions to the problems they present. This reference offers a brief, elementary account of microwave propagation through the atmosphere and discusses radiometric applications in the microwave band used to characterize and model atmospheric constituents, which is also known as remote sensing. Summarizing the latest research results in the field, as well as radiometric models and measurement methods, this book covers topics including: Free space propagation Reflection, interference, polarization, and other key aspects of electromagnetic wave propagation Radio refraction and its effects on propagation delay Methodology of estimating water vapor attenuation using radiosonde data Knowledge of rain structures and use of climatological patterns to estimate/measure attenuation of rain, snow, fog, and other prevalent atmospheric particles and human-made substances Dual/multifrequency methodology to deal with the influence of clouds on radiometric attenuation Deployment of microwaves to ascertain various tropospheric conditions Composition and characteristics of the troposphere, to help readers fully understand microwave propagation Derived parameters of water, free space propagation, and conditions and variable constituents such as water vapor and vapor pressure, density, and ray bending










Physical Principles of Remote Sensing


Book Description

A quantitative yet accessible introduction to remote sensing techniques, this new edition covers a broad spectrum of Earth science applications.




Laser Beam Propagation in the Atmosphere


Book Description

With contributions by numerous experts




Advances in Atmospheric Remote Sensing with Lidar


Book Description

Lidar or laser radar, the depth-resolved remote measurement of atmospheric parameters with optical means, has become an important tool in the field of atmospheric and environmental remote sensing. In this volume the latest progress in the development of Lidar methods, experiments, and applications is described. The content is based on selected and thoroughly refereed papers presented at the 18th International Laser Radar Conference, Berlin, 22 - 26 July 1996. The book is divided into six parts which cover the topics of tropospheric aerosols and clouds, Lidar in space, wind, water vapor, troposheric trace gases and plumes, and stratospheric and mesospheric profiling. As a supplement to fundamental LIDAR textbooks this volume may serve as a guide through the blossoming field of modern Lidar techniques.







Infrasound Monitoring for Atmospheric Studies


Book Description

The use of infrasound to monitor the atmosphere has, like infrasound itself, gone largely unheard of through the years. But it has many applications, and it is about time that a book is being devoted to this fascinating subject. Our own involvement with infrasound occurred as graduate students of Prof. William Donn, who had established an infrasound array at the Lamont-Doherty Geological Observatory (now the Lamont-Doherty Earth Observatory) of Columbia University. It was a natural outgrowth of another major activity at Lamont, using seismic waves to explore the Earth’s interior. Both the atmosphere and the solid Earth feature velocity (seismic or acoustic) gradients in the vertical which act to refract the respective waves. The refraction in turn allows one to calculate the respective background structure in these mediums, indirectly exploring locations that are hard to observe otherwise. Monitoring these signals also allows one to discover various phenomena, both natural and man-made (some of which have military applications).