Atomic Force Microscopy


Book Description

This book explains the operating principles of atomic force microscopy with the aim of enabling the reader to operate a scanning probe microscope successfully and understand the data obtained with the microscope. This enhanced second edition to "Scanning Probe Microscopy" (Springer, 2015) represents a substantial extension and revision to the part on atomic force microscopy of the previous book. Covering both fundamental and important technical aspects of atomic force microscopy, this book concentrates on the principles the methods using a didactic approach in an easily digestible manner. While primarily aimed at graduate students in physics, materials science, chemistry, nanoscience and engineering, this book is also useful for professionals and newcomers in the field, and is an ideal reference book in any atomic force microscopy lab.




Atomic Force Microscopy


Book Description

This book enlightens readers on the basic surface properties and distance-dependent intersurface forces one must understand to obtain even simple data from an atomic force microscope (AFM). The material becomes progressively more complex throughout the book, explaining details of calibration, physical origin of artifacts, and signal/noise limitations. Coverage spans imaging, materials property characterization, in-liquid interfacial analysis, tribology, and electromagnetic interactions. “Supplementary material for this book can be found by entering ISBN 9780470638828 on booksupport.wiley.com”




Atomic Force Microscopy in Process Engineering


Book Description

This is the first book to bring together both the basic theory and proven process engineering practice of AFM. It is presented in a way that is accessible and valuable to practising engineers as well as to those who are improving their AFM skills and knowledge, and to researchers who are developing new products and solutions using AFM. The book takes a rigorous and practical approach that ensures it is directly applicable to process engineering problems. Fundamentals and techniques are concisely described, while specific benefits for process engineering are clearly defined and illustrated. Key content includes: particle-particle, and particle-bubble interactions; characterization of membrane surfaces; the development of fouling resistant membranes; nanoscale pharmaceutical analysis; nanoengineering for cellular sensing; polymers on surfaces; micro and nanoscale rheometry. Atomic force microscopy (AFM) is an important tool for process engineers and scientists as it enables improved processes and products The only book dealing with the theory and practical applications of atomic force microscopy in process engineering Provides best-practice guidance and experience on using AFM for process and product improvement




Atomic Force Microscopy


Book Description

Atomic force microscopes are very important tools for the advancement of science and technology. This book provides an introduction to the microscopes so that scientists and engineers can learn both how to use them, and what they can do.




Noncontact Atomic Force Microscopy


Book Description

Since 1995, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. Based on nanomechanical methods, the NC-AFM detects the weak attractive force between the tip of a cantilever and a sample surface. This method has the following characteristics: it has true atomic resolution; it can measure atomic force interactions, i.e. it can be used in so-called atomic force spectroscopy (AFS); it can also be used to study insulators; and it can measure mechanical responses such as elastic deformation. This is the first book that deals with all of the emerging NC-AFM issues.




Electrical Atomic Force Microscopy for Nanoelectronics


Book Description

The tremendous impact of electronic devices on our lives is the result of continuous improvements of the billions of nanoelectronic components inside integrated circuits (ICs). However, ultra-scaled semiconductor devices require nanometer control of the many parameters essential for their fabrication. Through the years, this created a strong alliance between microscopy techniques and IC manufacturing. This book reviews the latest progress in IC devices, with emphasis on the impact of electrical atomic force microscopy (AFM) techniques for their development. The operation principles of many techniques are introduced, and the associated metrology challenges described. Blending the expertise of industrial specialists and academic researchers, the chapters are dedicated to various AFM methods and their impact on the development of emerging nanoelectronic devices. The goal is to introduce the major electrical AFM methods, following the journey that has seen our lives changed by the advent of ubiquitous nanoelectronics devices, and has extended our capability to sense matter on a scale previously inaccessible.




Atomic Force Microscopy in Liquid


Book Description

About 40 % of current atomic force microscopy (AFM) research is performed in liquids, making liquid-based AFM a rapidly growing and important tool for the study of biological materials. This book focuses on the underlying principles and experimental aspects of AFM under liquid, with an easy-to-follow organization intended for new AFM scientists. The book also serves as an up-to-date review of new AFM techniques developed especially for biological samples. Aimed at physicists, materials scientists, biologists, analytical chemists, and medicinal chemists. An ideal reference book for libraries. From the contents: Part I: General Atomic Force Microscopy * AFM: Basic Concepts * Carbon Nanotube Tips in Atomic Force Microscopy with * Applications to Imaging in Liquid * Force Spectroscopy * Atomic Force Microscopy in Liquid * Fundamentals of AFM Cantilever Dynamics in Liquid * Environments * Single-Molecule Force Spectroscopy * High-Speed AFM for Observing Dynamic Processes in Liquid * Integration of AFM with Optical Microscopy Techniques Part II: Biological Applications * DNA and Protein-DNA Complexes * Single-Molecule Force Microscopy of Cellular Sensors * AFM-Based Single-Cell Force Spectroscopy * Nano-Surgical Manipulation of Living Cells with the AFM




Amplitude Modulation Atomic Force Microscopy


Book Description

Filling a gap in the literature, this book features in-depth discussions on amplitude modulation AFM, providing an overview of the theory, instrumental considerations and applications of the technique in both academia and industry. As such, it includes examples from material science, soft condensed matter, molecular biology, and biophysics, among others. The text is written in such a way as to enable readers from different backgrounds and levels of expertise to find the information suitable for their needs.




Noncontact Atomic Force Microscopy


Book Description

Since the original publication of Noncontact Atomic Force Microscopy in 2002, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. This second treatment deals with the following outstanding recent results obtained with atomic resolution since then: force spectroscopy and mapping with atomic resolution; tuning fork; atomic manipulation; magnetic exchange force microscopy; atomic and molecular imaging in liquids; and other new technologies. These results and technologies are now helping evolve NC-AFM toward practical tools for characterization and manipulation of individual atoms/molecules and nanostructures with atomic/subatomic resolution. Therefore, the book exemplifies how NC-AFM has become a crucial tool for the expanding fields of nanoscience and nanotechnology.




Atomic Force Microscopy


Book Description

The natural, biological, medical, and related sciences would not be what they are today without the microscope. After the introduction of the optical microscope, a second breakthrough in morphostructural surface analysis occurred in the 1940s with the development of the scanning electron microscope (SEM), which, instead of light (i. e. , photons) and glass lenses, uses electrons and electromagnetic lenses (magnetic coils). Optical and scanning (or transmission) electron microscopes are called “far-field microscopes” because of the long distance between the sample and the point at which the image is obtained in comparison with the wavelengths of the photons or electrons involved. In this case, the image is a diffraction pattern and its resolution is wavelength limited. In 1986, a completely new type of microscopy was proposed, which, without the use of lenses, photons, or electrons, directly explores the sample surface by means of mechanical scanning, thus opening up unexpected possibilities for the morphostructural and mechanical analysis of biological specimens. These new scanning probe microscopes are based on the concept of near-field microscopy, which overcomes the problem of the limited diffraction-related resolution inherent in conventional microscopes. Located in the immediate vicinity of the sample itself (usually within a few nanometers), the probe records the intensity, rather than the interference signal, thus significantly improving resolution. Since the most we- known microscopes of this type operate using atomic forces, they are frequently referred to as atomic force microscopes (AFMs).