Atomica Physics 20


Book Description

The 20th International Conference on Atomic Physics brought together more than 800 scientists discussing the most recent advances in atomic physics. Among other topics, this book covers new trends in quantum information, the physics of cold degenerate gases, cold molecules and precision measurements discussed by experts in the respective fields.




Atomic Physics


Book Description

Nobel Laureate's lucid treatment of kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic structure and spectral lines, much more. Over 40 appendices, bibliography.




Atomic Physics


Book Description

This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimental basis of the subject, especially in the later chapters. It includes ample tutorial material (examples, illustrations, chapter summaries, graded problem sets).




Problems of Atomic Dynamics


Book Description

The Nobel Laureate discusses the foundations of quantum theory in two lectures, one on the structure of the atom, the other on the lattice theory of rigid bodies.




Physics of Atomic Nuclei


Book Description

This advanced textbook presents an extensive and diverse study of low-energy nuclear physics considering the nucleus as a quantum system of strongly interacting constituents. The contents guide students from the basic facts and ideas to more modern topics including important developments over the last 20 years, resulting in a comprehensive collection of major modern-day nuclear models otherwise unavailable in the current literature. The book emphasizes the common features of the nucleus and other many-body mesoscopic systems currently in the center of interest in physics. The authors have also included full problem sets that can be selected by lecturers and adjusted to specific interests for more advanced students, with many chapters containing links to freely available computer code. As a result, readers are equipped for scientific work in mesoscopic physics.




The Fundamentals of Atomic and Molecular Physics


Book Description

The Fundamentals of Atomic and Molecular Physics is intended as an introduction to the field for advanced undergraduates who have taken quantum mechanics. Each chapter builds upon the previous, using the same tools and methods throughout. As the students progress through the book, their ability to use these tools will steadily increase, along with their confidence in their efficacy. The book treats the two-electron atom as the simplest example of the many-electron atom—as opposed to using techniques that are not applicable to many-electron atoms—so that it is unnecessary to develop additional equations when turning to multielectron atoms, such as carbon. External fields are treated using both perturbation theory and direct diagonalization and spontaneous emission is developed from first principles. Only diatomic molecules are considered with the hydrogen molecular ion and neutral molecule treated in some detail. This comprehensive coverage of the quantum mechanics of complex atoms and simple diatomic molecules, developed from the very basic components, is extremely useful for students considering graduate studies in any area of physics.




Atomic Physics and Human Knowledge


Book Description

This collection of articles, which were first published in 1958 and written on various occasions between 1932 and 1957, forms a sequel to Danish physician Niels Bohr’s earlier essays in Atomic Theory and the Description of Nature (1934). “The theme of the papers is the epistemological lesson which the modern development of atomic physics has given us and its relevance for analysis and synthesis in many fields of human knowledge. “The articles in the previous edition were written at a time when the establishment of the mathematical methods of quantum mechanics had created a firm foundation for the consistent treatment of atomic phenomena, and the conditions for an unambiguous account of experience within this framework were characterized by the notion of complementarity. In the papers collected here, this approach is further developed in logical formulation and given broader application.”







Atomic Physics: Precise Measurements and Ultracold Matter


Book Description

This book traces the evolution of Atomic Physics from precision spectroscopy to the manipulation of atoms at a billionth of a degree above absolute zero. Quantum worlds can be simulated and fundamental theories, such as General Relativity and Quantum Electrodynamics, can be tested with table-top experiments.




A Student's Guide to Atomic Physics


Book Description

A concise overview of the fundamental concepts and applications of atomic physics for students including examples, problems, and diagrams of key concepts.