Attractor Dimension Estimates for Dynamical Systems: Theory and Computation


Book Description

This book provides analytical and numerical methods for the estimation of dimension characteristics (Hausdorff, Fractal, Carathéodory dimensions) for attractors and invariant sets of dynamical systems and cocycles generated by smooth differential equations or maps in finite-dimensional Euclidean spaces or on manifolds. It also discusses stability investigations using estimates based on Lyapunov functions and adapted metrics. Moreover, it introduces various types of Lyapunov dimensions of dynamical systems with respect to an invariant set, based on local, global and uniform Lyapunov exponents, and derives analytical formulas for the Lyapunov dimension of the attractors of the Hénon and Lorenz systems. Lastly, the book presents estimates of the topological entropy for general dynamical systems in metric spaces and estimates of the topological dimension for orbit closures of almost periodic solutions to differential equations.




Chaotic Systems with Multistability and Hidden Attractors


Book Description

This book presents a collection of new articles written by world-leading experts and active researchers to present their recent finding and progress in the new area of chaotic systems and dynamics, regarding emerging subjects of unconventional chaotic systems and their complex dynamics.It guide readers directly to the research front of the new scientific studies. This book is unique of its kind in the current literature, presenting broad scientific research topics including multistability and hidden attractors in unconventional chaotic systems, such as chaotic systems without equilibria, with only stable equilibria, with a curve or a surface of equilibria. The book describes many novel phenomena observed from chaotic systems, such as non-Shilnikov type chaos, coexistence of different types of attractors, and spontaneous symmetry breaking in chaotic systems. The book presents state-of-the-art scientific research progress in the field with both theoretical advances and potential applications. This book is suitable for all researchers and professionals in the areas of nonlinear dynamics and complex systems, including research professionals, physicists, applied mathematicians, computer scientists and, in particular, graduate students in related fields.




Artificial Intelligence Applications and Innovations


Book Description

This book constitutes the refereed proceedings of the 17th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2021, held virtually and in Hersonissos, Crete, Greece, in June 2021. The 50 full papers and 11 short papers presented were carefully reviewed and selected from 113 submissions. They cover a broad range of topics related to technical, legal, and ethical aspects of artificial intelligence systems and their applications and are organized in the following sections: adaptive modeling/ neuroscience; AI in biomedical applications; AI impacts/ big data; automated machine learning; autonomous agents; clustering; convolutional NN; data mining/ word counts; deep learning; fuzzy modeling; hyperdimensional computing; Internet of Things/ Internet of energy; machine learning; multi-agent systems; natural language; recommendation systems; sentiment analysis; and smart blockchain applications/ cybersecurity. Chapter “Improving the Flexibility of Production Scheduling in Flat Steel Production Through Standard and AI-based Approaches: Challenges and Perspective” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Mathematical Approaches to Problems in Resource Management and Epidemiology


Book Description

Increasingly, mathematical methods are being used to advantage in addressing the problems facing humanity in managing its environment. Problems in resource management and epidemiology especially have demonstrated the utility of quantitative modeling. To explore these approaches, the Center of Applied Mathematics at Cornell University organized a conference in Fall, 1987, with the objective of surveying and assessing the state of the art. This volume records the proceedings of that conference. Underlying virtually all of these studies are models of population growth, from individual cells to large vertebrates. Cell population growth presents the simplest of systems for study, and is of fundamental importance in its own right for a variety of medical and environmental applications. In Part I of this volume, Michael Shuler describes computer models of individual cells and cell populations, and Frank Hoppensteadt discusses the synchronization of bacterial culture growth. Together, these provide a valuable introduction to mathematical cell biology.




From Topology to Computation: Proceedings of the Smalefest


Book Description

An extraordinary mathematical conference was held 5-9 August 1990 at the University of California at Berkeley: From Topology to Computation: Unity and Diversity in the Mathematical Sciences An International Research Conference in Honor of Stephen Smale's 60th Birthday The topics of the conference were some of the fields in which Smale has worked: • Differential Topology • Mathematical Economics • Dynamical Systems • Theory of Computation • Nonlinear Functional Analysis • Physical and Biological Applications This book comprises the proceedings of that conference. The goal of the conference was to gather in a single meeting mathemati cians working in the many fields to which Smale has made lasting con tributions. The theme "Unity and Diversity" is enlarged upon in the section entitled "Research Themes and Conference Schedule." The organizers hoped that illuminating connections between seemingly separate mathematical sub jects would emerge from the conference. Since such connections are not easily made in formal mathematical papers, the conference included discussions after each of the historical reviews of Smale's work in different fields. In addition, there was a final panel discussion at the end of the conference.




Dimensions and Entropies in Chaotic Systems


Book Description

These proceedings contain the papers contributed to the International Work shop on "Dimensions and Entropies in Chaotic Systems" at the Pecos River Conference Center on the Pecos River Ranch in Spetember 1985. The work shop was held by the Center for Nonlinear Studies of the Los Alamos National Laboratory. At the Center for Nonlinear Studies the investigation of chaotic dynamics and especially the quantification of complex behavior has a long tradition. In spite of some remarkable successes, there are fundamental, as well as nu merical, problems involved in the practical realization of these algorithms. This has led to a series of publications in which modifications and improve ments of the original methods have been proposed. At present there exists a growing number of competing dimension algorithms but no comprehensive review explaining how they are related. Further, in actual experimental ap plications, rather than a precise algorithm, one finds frequent use of "rules of thumb" together with error estimates which, in many cases, appear to be far too optimistic. Also it seems that questions like "What is the maximal dimension of an attractor that one can measure with a given number of data points and a given experimental resolution?" have still not been answered in a satisfactory manner for general cases.




Handbook of Dynamical Systems


Book Description

This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.




Applied Analysis of the Navier-Stokes Equations


Book Description

This introductory physical and mathematical presentation of the Navier-Stokes equations focuses on unresolved questions of the regularity of solutions in three spatial dimensions, and the relation of these issues to the physical phenomenon of turbulent fluid motion.




Modern Mathematical Methods and High Performance Computing in Science and Technology


Book Description

The book discusses important results in modern mathematical models and high performance computing, such as applied operations research, simulation of operations, statistical modeling and applications, invisibility regions and regular meta-materials, unmanned vehicles, modern radar techniques/SAR imaging, satellite remote sensing, coding, and robotic systems. Furthermore, it is valuable as a reference work and as a basis for further study and research. All contributing authors are respected academicians, scientists and researchers from around the globe. All the papers were presented at the international conference on Modern Mathematical Methods and High Performance Computing in Science & Technology (M3HPCST 2015), held at Raj Kumar Goel Institute of Technology, Ghaziabad, India, from 27–29 December 2015, and peer-reviewed by international experts. The conference provided an exceptional platform for leading researchers, academicians, developers, engineers and technocrats from a broad range of disciplines to meet and discuss state-of-the-art mathematical methods and high performance computing in science & technology solutions. This has brought new prospects for collaboration across disciplines and ideas that facilitate novel breakthroughs.




Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields


Book Description

An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.