Authorship Attribution


Book Description

Authorship Attribution surveys the history and present state of the discipline, presenting some comparative results where available. It also provides a theoretical and empirically-tested basis for further work. Many modern techniques are described and evaluated, along with some insights for application for novices and experts alike.




Versification and Authorship Attribution


Book Description

The technique known as contemporary stylometry uses different methods, including machine learning, to discover a poem’s author based on features like the frequencies of words and character n-grams. However, there is one potential textual fingerprint stylometry tends to ignore: versification, or the very making of language into verse. Using poetic texts in three different languages (Czech, German, and Spanish), Petr Plecháč asks whether versification features like rhythm patterns and types of rhyme can help determine authorship. He then tests its findings on two unsolved literary mysteries. In the first, Plecháč distinguishes the parts of the Elizabethan verse play The Two Noble Kinsmen written by William Shakespeare from those written by his coauthor, John Fletcher. In the second, he seeks to solve a case of suspected forgery: how authentic was a group of poems first published as the work of the nineteenth-century Russian author Gavriil Stepanovich Batenkov? This book of poetic investigation should appeal to literary sleuths the world over.




Cognitive Approach to Natural Language Processing


Book Description

As natural language processing spans many different disciplines, it is sometimes difficult to understand the contributions and the challenges that each of them presents. This book explores the special relationship between natural language processing and cognitive science, and the contribution of computer science to these two fields. It is based on the recent research papers submitted at the international workshops of Natural Language and Cognitive Science (NLPCS) which was launched in 2004 in an effort to bring together natural language researchers, computer scientists, and cognitive and linguistic scientists to collaborate together and advance research in natural language processing. The chapters cover areas related to language understanding, language generation, word association, word sense disambiguation, word predictability, text production and authorship attribution. This book will be relevant to students and researchers interested in the interdisciplinary nature of language processing. - Discusses the problems and issues that researchers face, providing an opportunity for developers of NLP systems to learn from cognitive scientists, cognitive linguistics and neurolinguistics - Provides a valuable opportunity to link the study of natural language processing to the understanding of the cognitive processes of the brain




Automating Open Source Intelligence


Book Description

Algorithms for Automating Open Source Intelligence (OSINT) presents information on the gathering of information and extraction of actionable intelligence from openly available sources, including news broadcasts, public repositories, and more recently, social media. As OSINT has applications in crime fighting, state-based intelligence, and social research, this book provides recent advances in text mining, web crawling, and other algorithms that have led to advances in methods that can largely automate this process. The book is beneficial to both practitioners and academic researchers, with discussions of the latest advances in applications, a coherent set of methods and processes for automating OSINT, and interdisciplinary perspectives on the key problems identified within each discipline. Drawing upon years of practical experience and using numerous examples, editors Robert Layton, Paul Watters, and a distinguished list of contributors discuss Evidence Accumulation Strategies for OSINT, Named Entity Resolution in Social Media, Analyzing Social Media Campaigns for Group Size Estimation, Surveys and qualitative techniques in OSINT, and Geospatial reasoning of open data. - Presents a coherent set of methods and processes for automating OSINT - Focuses on algorithms and applications allowing the practitioner to get up and running quickly - Includes fully developed case studies on the digital underground and predicting crime through OSINT - Discusses the ethical considerations when using publicly available online data




Social Network Analytics for Contemporary Business Organizations


Book Description

Social technology is quickly becoming a vital tool in our personal, educational, and professional lives. Its use must be further examined in order to determine the role of social media technology in organizational settings to promote business development and growth. Social Network Analytics for Contemporary Business Organizations is a critical scholarly resource that analyzes the application of social media in business applications. Featuring coverage on a broad range of topics, such as business management, dynamic networks, and online interaction, this book is geared towards professionals, researchers, academics, students, managers, and practitioners actively involved in the business industry.




Building Machine Learning Systems with Python


Book Description

This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro.




Machine Learning Methods for Stylometry


Book Description

This book presents methods and approaches used to identify the true author of a doubtful document or text excerpt. It provides a broad introduction to all text categorization problems (like authorship attribution, psychological traits of the author, detecting fake news, etc.) grounded in stylistic features. Specifically, machine learning models as valuable tools for verifying hypotheses or revealing significant patterns hidden in datasets are presented in detail. Stylometry is a multi-disciplinary field combining linguistics with both statistics and computer science. The content is divided into three parts. The first, which consists of the first three chapters, offers a general introduction to stylometry, its potential applications and limitations. Further, it introduces the ongoing example used to illustrate the concepts discussed throughout the remainder of the book. The four chapters of the second part are more devoted to computer science with a focus on machine learning models. Their main aim is to explain machine learning models for solving stylometric problems. Several general strategies used to identify, extract, select, and represent stylistic markers are explained. As deep learning represents an active field of research, information on neural network models and word embeddings applied to stylometry is provided, as well as a general introduction to the deep learning approach to solving stylometric questions. In turn, the third part illustrates the application of the previously discussed approaches in real cases: an authorship attribution problem, seeking to discover the secret hand behind the nom de plume Elena Ferrante, an Italian writer known worldwide for her My Brilliant Friend’s saga; author profiling in order to identify whether a set of tweets were generated by a bot or a human being and in this second case, whether it is a man or a woman; and an exploration of stylistic variations over time using US political speeches covering a period of ca. 230 years. A solutions-based approach is adopted throughout the book, and explanations are supported by examples written in R. To complement the main content and discussions on stylometric models and techniques, examples and datasets are freely available at the author’s Github website.




Machine Learning for Authorship Attribution and Cyber Forensics


Book Description

The book first explores the cybersecurity’s landscape and the inherent susceptibility of online communication system such as e-mail, chat conversation and social media in cybercrimes. Common sources and resources of digital crimes, their causes and effects together with the emerging threats for society are illustrated in this book. This book not only explores the growing needs of cybersecurity and digital forensics but also investigates relevant technologies and methods to meet the said needs. Knowledge discovery, machine learning and data analytics are explored for collecting cyber-intelligence and forensics evidence on cybercrimes. Online communication documents, which are the main source of cybercrimes are investigated from two perspectives: the crime and the criminal. AI and machine learning methods are applied to detect illegal and criminal activities such as bot distribution, drug trafficking and child pornography. Authorship analysis is applied to identify the potential suspects and their social linguistics characteristics. Deep learning together with frequent pattern mining and link mining techniques are applied to trace the potential collaborators of the identified criminals. Finally, the aim of the book is not only to investigate the crimes and identify the potential suspects but, as well, to collect solid and precise forensics evidence to prosecute the suspects in the court of law.




Multidisciplinary Information Retrieval


Book Description

This book constitutes the proceedings of the 7th International Information Retrieval Facility Conference, IRFC 2014, held in Copenhagen, Denmark, November 2014. The 10 papers presented together with one industry paper were carefully reviewed and selected from 13 submissions. The conference aims at bringing young researchers into contact with the industry at an early stage, emphasizing the applicability of IR solutions to real industry cases and the respective challenges.




Big Data Analytics


Book Description

While the term Big Data is open to varying interpretation, it is quite clear that the Volume, Velocity, and Variety (3Vs) of data have impacted every aspect of computational science and its applications. The volume of data is increasing at a phenomenal rate and a majority of it is unstructured. With big data, the volume is so large that processing it using traditional database and software techniques is difficult, if not impossible. The drivers are the ubiquitous sensors, devices, social networks and the all-pervasive web. Scientists are increasingly looking to derive insights from the massive quantity of data to create new knowledge. In common usage, Big Data has come to refer simply to the use of predictive analytics or other certain advanced methods to extract value from data, without any required magnitude thereon. Challenges include analysis, capture, curation, search, sharing, storage, transfer, visualization, and information privacy. While there are challenges, there are huge opportunities emerging in the fields of Machine Learning, Data Mining, Statistics, Human-Computer Interfaces and Distributed Systems to address ways to analyze and reason with this data. The edited volume focuses on the challenges and opportunities posed by "Big Data" in a variety of domains and how statistical techniques and innovative algorithms can help glean insights and accelerate discovery. Big data has the potential to help companies improve operations and make faster, more intelligent decisions. Review of big data research challenges from diverse areas of scientific endeavor Rich perspective on a range of data science issues from leading researchers Insight into the mathematical and statistical theory underlying the computational methods used to address big data analytics problems in a variety of domains