Electrical Systems 2


Book Description

Methods of diagnosis and prognosis play a key role in the reliability and safety of industrial systems. Failure diagnosis requires the use of suitable sensors, which provide signals that are processed to monitor features (health indicators) for defects. These features are required to distinguish between operating states, in order to inform the operator of the severity level, or even the type, of a failure. Prognosis is defined as the estimation of a systems lifespan, including how long remains and how long has passed. It also encompasses the prediction of impending failures. This is a challenge that many researchers are currently trying to address. Electrical Systems, a book in two volumes, informs readers of the theoretical solutions to this problem, and the results obtained in several laboratories in France, Spain and further afield. To this end, many researchers from the scientific community have contributed to this book to share their research results.




Machine Learning-Based Fault Diagnosis for Industrial Engineering Systems


Book Description

This book provides advanced techniques for precision compensation and fault diagnosis of precision motion systems and rotating machinery. Techniques and applications through experiments and case studies for intelligent precision compensation and fault diagnosis are offered along with the introduction of machine learning and deep learning methods. Machine Learning-Based Fault Diagnosis for Industrial Engineering Systems discusses how to formulate and solve precision compensation and fault diagnosis problems. The book includes experimental results on hardware equipment used as practical examples throughout the book. Machine learning and deep learning methods used in intelligent precision compensation and intelligent fault diagnosis are introduced. Applications to deal with relevant problems concerning CNC machining and rotating machinery in industrial engineering systems are provided in detail along with applications used in precision motion systems. Methods, applications, and concepts offered in this book can help all professional engineers and students across many areas of engineering and operations management that are involved in any part of Industry 4.0 transformation.




Introduction of Intelligent Machine Fault Diagnosis and Prognosis


Book Description

Condition monitoring, fault diagnosis and prognosis of machinery have received considerable attention in recent years and they are increasingly becoming important in industry because of the need to increase reliability and decrease possible loss of production due to the fault of equipments. Early fault detection, diagnosis and prognosis can increase equipment availability and performance, reduce consequential damage, prolong machine life and reduce spare parts inventories and break down maintenance. With the development of the artificial intelligence techniques, many intelligent systems have been employed to assist the maintenance management task to correctly interpret the fault data. The book is very easy to study; even if the reader is a beginner in the fault diagnosis area, they do not need special prerequisite knowledge to understand the contents of this book. The book is equipped with software under MATLAB and offers many examples which are related to fault diagnosis processes. It will be very useful to readers who want to study feature-based intelligent machine fault diagnosis and prognosis techniques. The book is dedicated to graduate students of mechanical and electrical engineering, computer science and for practising engineers.




Vibration-based Condition Monitoring


Book Description

"Without doubt the best modern and up-to-date text on the topic, wirtten by one of the world leading experts in the field. Should be on the desk of any practitioner or researcher involved in the field of Machine Condition Monitoring" Simon Braun, Israel Institute of Technology Explaining complex ideas in an easy to understand way, Vibration-based Condition Monitoring provides a comprehensive survey of the application of vibration analysis to the condition monitoring of machines. Reflecting the natural progression of these systems by presenting the fundamental material and then moving onto detection, diagnosis and prognosis, Randall presents classic and state-of-the-art research results that cover vibration signals from rotating and reciprocating machines; basic signal processing techniques; fault detection; diagnostic techniques, and prognostics. Developed out of notes for a course in machine condition monitoring given by Robert Bond Randall over ten years at the University of New South Wales, Vibration-based Condition Monitoring: Industrial, Aerospace and Automotive Applications is essential reading for graduate and postgraduate students/ researchers in machine condition monitoring and diagnostics as well as condition monitoring practitioners and machine manufacturers who want to include a machine monitoring service with their product. Includes a number of exercises for each chapter, many based on Matlab, to illustrate basic points as well as to facilitate the use of the book as a textbook for courses in the topic. Accompanied by a website www.wiley.com/go/randall housing exercises along with data sets and implementation code in Matlab for some of the methods as well as other pedagogical aids. Authored by an internationally recognised authority in the area of condition monitoring.




Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery


Book Description

Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery provides a comprehensive introduction of intelligent fault diagnosis and RUL prediction based on the current achievements of the author's research group. The main contents include multi-domain signal processing and feature extraction, intelligent diagnosis models, clustering algorithms, hybrid intelligent diagnosis strategies, and RUL prediction approaches, etc. This book presents fundamental theories and advanced methods of identifying the occurrence, locations, and degrees of faults, and also includes information on how to predict the RUL of rotating machinery. Besides experimental demonstrations, many application cases are presented and illustrated to test the methods mentioned in the book. This valuable reference provides an essential guide on machinery fault diagnosis that helps readers understand basic concepts and fundamental theories. Academic researchers with mechanical engineering or computer science backgrounds, and engineers or practitioners who are in charge of machine safety, operation, and maintenance will find this book very useful. - Provides a detailed background and roadmap of intelligent diagnosis and RUL prediction of rotating machinery, involving fault mechanisms, vibration characteristics, health indicators, and diagnosis and prognostics - Presents basic theories, advanced methods, and the latest contributions in the field of intelligent fault diagnosis and RUL prediction - Includes numerous application cases, and the methods, algorithms, and models introduced in the book are demonstrated by industrial experiences




Fault Diagnosis of Induction Motors


Book Description

This book is a comprehensive, structural approach to fault diagnosis strategy. The different fault types, signal processing techniques, and loss characterisation are addressed in the book. This is essential reading for work with induction motors for transportation and energy.




Practical Machinery Vibration Analysis and Predictive Maintenance


Book Description

Machinery Vibration Analysis and Predictive Maintenance provides a detailed examination of the detection, location and diagnosis of faults in rotating and reciprocating machinery using vibration analysis. The basics and underlying physics of vibration signals are first examined. The acquisition and processing of signals is then reviewed followed by a discussion of machinery fault diagnosis using vibration analysis. Hereafter the important issue of rectifying faults that have been identified using vibration analysis is covered. The book also covers the other techniques of predictive maintenance such as oil and particle analysis, ultrasound and infrared thermography. The latest approaches and equipment used together with the latest techniques in vibration analysis emerging from current research are also highlighted. - Understand the basics of vibration measurement - Apply vibration analysis for different machinery faults - Diagnose machinery-related problems with vibration analysis techniques




Learning Deep Architectures for AI


Book Description

Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.




Advanced Condition Monitoring and Fault Diagnosis of Electric Machines


Book Description

The reliability of induction motors is a major requirement in many industrial applications. It is especially important where an unexpected breakdown might result in the interruption of critical services such as military operations, transportation, aviation, and medical applications. Advanced Condition Monitoring and Fault Diagnosis of Electric Machines is a collection of innovative research on various issues related to machinery condition monitoring, signal processing and conditioning, instrumentation and measurements, and new trends in condition monitoring. It also pays special attention to the fault identification process. While highlighting topics including spectral analysis, electrical engineering, and bearing faults, this book is an ideal reference source for electrical engineers, mechanical engineers, researchers, and graduate-level students seeking current research on various methods of maintaining machinery.




Intelligent Fault Diagnosis and Prognosis for Engineering Systems


Book Description

Expert guidance on theory and practice in condition-based intelligent machine fault diagnosis and failure prognosis Intelligent Fault Diagnosis and Prognosis for Engineering Systems gives a complete presentation of basic essentials of fault diagnosis and failure prognosis, and takes a look at the cutting-edge discipline of intelligent fault diagnosis and failure prognosis technologies for condition-based maintenance. It thoroughly details the interdisciplinary methods required to understand the physics of failure mechanisms in materials, structures, and rotating equipment, and also presents strategies to detect faults or incipient failures and predict the remaining useful life of failing components. Case studies are used throughout the book to illustrate enabling technologies. Intelligent Fault Diagnosis and Prognosis for Engineering Systems offers material in a holistic and integrated approach that addresses the various interdisciplinary components of the field--from electrical, mechanical, industrial, and computer engineering to business management. This invaluably helpful book: * Includes state-of-the-art algorithms, methodologies, and contributions from leading experts, including cost-benefit analysis tools and performance assessment techniques * Covers theory and practice in a way that is rooted in industry research and experience * Presents the only systematic, holistic approach to a strongly interdisciplinary topic