Automated Grammatical Error Detection for Language Learners


Book Description

It has been estimated that over a billion people are using or learning English as a second or foreign language, and the numbers are growing not only for English but for other languages as well. These language learners provide a burgeoning market for tools that help identify and correct learners' writing errors. Unfortunately, the errors targeted by typical commercial proofreading tools do not include those aspects of a second language that are hardest to learn. This volume describes the types of constructions English language learners find most difficult: constructions containing prepositions, articles, and collocations. It provides an overview of the automated approaches that have been developed to identify and correct these and other classes of learner errors in a number of languages. Error annotation and system evaluation are particularly important topics in grammatical error detection because there are no commonly accepted standards. Chapters in the book describe the options available to researchers, recommend best practices for reporting results, and present annotation and evaluation schemes. The final chapters explore recent innovative work that opens new directions for research. It is the authors' hope that this volume will continue to contribute to the growing interest in grammatical error detection by encouraging researchers to take a closer look at the field and its many challenging problems.




Automated Grammatical Error Detection for Language Learners, Second Edition


Book Description

It has been estimated that over a billion people are using or learning English as a second or foreign language, and the numbers are growing not only for English but for other languages as well. These language learners provide a burgeoning market for tools that help identify and correct learners' writing errors. Unfortunately, the errors targeted by typical commercial proofreading tools do not include those aspects of a second language that are hardest to learn. This volume describes the types of constructions English language learners find most difficult: constructions containing prepositions, articles, and collocations. It provides an overview of the automated approaches that have been developed to identify and correct these and other classes of learner errors in a number of languages. Error annotation and system evaluation are particularly important topics in grammatical error detection because there are no commonly accepted standards. Chapters in the book describe the options available to researchers, recommend best practices for reporting results, and present annotation and evaluation schemes. The final chapters explore recent innovative work that opens new directions for research. It is the authors' hope that this volume will continue to contribute to the growing interest in grammatical error detection by encouraging researchers to take a closer look at the field and its many challenging problems.




Automated Grammatical Error Detection for Language Learners


Book Description

It has been estimated that over a billion people are using or learning English as a second or foreign language, and the numbers are growing not only for English but for other languages as well. These language learners provide a burgeoning market for tools that help identify and correct learners' writing errors. Unfortunately, the errors targeted by typical commercial proofreading tools do not include those aspects of a second language that are hardest to learn. This volume describes the types of constructions English language learners find most difficult -- constructions containing prepositions, articles, and collocations. It provides an overview of the automated approaches that have been developed to identify and correct these and other classes of learner errors in a number of languages. Error annotation and system evaluation are particularly important topics in grammatical error detection because there are no commonly accepted standards. Chapters in the book describe the options available to researchers, recommend best practices for reporting results, and present annotation and evaluation schemes. The final chapters explore recent innovative work that opens new directions for research. It is the authors' hope that this volume will contribute to the growing interest in grammatical error detection by encouraging researchers to take a closer look at the field and its many challenging problems. Table of Contents: Introduction / History of Automated Grammatical Error Detection / Special Problems of Language Learners / Language Learner Data / Evaluating Error Detection Systems / Article and Preposition Errors / Collocation Errors / Different Approaches for Different Errors / Annotating Learner Errors / New Directions / Conclusion




The Cambridge Handbook of Learner Corpus Research


Book Description

The origins of learner corpus research go back to the late 1980s when large electronic collections of written or spoken data started to be collected from foreign/second language learners, with a view to advancing our understanding of the mechanisms of second language acquisition and developing tailor-made pedagogical tools. Engaging with the interdisciplinary nature of this fast-growing field, The Cambridge Handbook of Learner Corpus Research explores the diverse and extensive applications of learner corpora, with 27 chapters written by internationally renowned experts. This comprehensive work is a vital resource for students, teachers and researchers, offering fresh perspectives and a unique overview of the field. With representative studies in each chapter which provide an essential guide on how to conduct learner corpus research in a wide range of areas, this work is a cutting-edge account of learner corpus collection, annotation, methodology, theory, analysis and applications.




Automatic Treatment and Analysis of Learner Corpus Data


Book Description

This book is a critical appraisal of recent developments in corpus linguistics for the analysis of written and spoken learner data. The twelve papers cover an introductory critical appraisal of learner corpus data compilation and development (section 1); issues in data compilation, annotation and exchangeability (section 2); automatic approaches to data identification and analysis (section 3); and analysis of learner corpus data in the light of recent models of data analysis and interpretation, especially recent automatic approaches for the identification of learner language features (section 4). This collection is aimed at students and researchers of corpus linguistics, second language acquisition studies and quantitative linguistics. It will significantly advance learner corpus research in terms of methodological innovation and will fill in an important gap in the development of multidisciplinary approaches (for learner corpus studies).




Handbook of Automated Essay Evaluation


Book Description

This comprehensive, interdisciplinary handbook reviews the latest methods and technologies used in automated essay evaluation (AEE) methods and technologies. Highlights include the latest in the evaluation of performance-based writing assessments and recent advances in the teaching of writing, language testing, cognitive psychology, and computational linguistics. This greatly expanded follow-up to Automated Essay Scoring reflects the numerous advances that have taken place in the field since 2003 including automated essay scoring and diagnostic feedback. Each chapter features a common structure including an introduction and a conclusion. Ideas for diagnostic and evaluative feedback are sprinkled throughout the book. Highlights of the book’s coverage include: The latest research on automated essay evaluation. Descriptions of the major scoring engines including the E-rater®, the Intelligent Essay Assessor, the IntellimetricTM Engine, c-raterTM, and LightSIDE. Applications of the uses of the technology including a large scale system used in West Virginia. A systematic framework for evaluating research and technological results. Descriptions of AEE methods that can be replicated for languages other than English as seen in the example from China. Chapters from key researchers in the field. The book opens with an introduction to AEEs and a review of the "best practices" of teaching writing along with tips on the use of automated analysis in the classroom. Next the book highlights the capabilities and applications of several scoring engines including the E-rater®, the Intelligent Essay Assessor, the IntellimetricTM engine, c-raterTM, and LightSIDE. Here readers will find an actual application of the use of an AEE in West Virginia, psychometric issues related to AEEs such as validity, reliability, and scaling, and the use of automated scoring to detect reader drift, grammatical errors, discourse coherence quality, and the impact of human rating on AEEs. A review of the cognitive foundations underlying methods used in AEE is also provided. The book concludes with a comparison of the various AEE systems and speculation about the future of the field in light of current educational policy. Ideal for educators, professionals, curriculum specialists, and administrators responsible for developing writing programs or distance learning curricula, those who teach using AEE technologies, policy makers, and researchers in education, writing, psychometrics, cognitive psychology, and computational linguistics, this book also serves as a reference for graduate courses on automated essay evaluation taught in education, computer science, language, linguistics, and cognitive psychology.




Routledge Handbook of Technological Advances in Researching Language Learning


Book Description

The Routledge Handbook of Technological Advances in Researching Language Learning is the first volume to bring together the extant scholarship on the nature and role of digital technology in conducting second language research. The Handbook showcases technological advances, including issues and considerations, affecting research conduction in second language education. The contributions focus on the role of digital technology in researching second language education, second language acquisition, and applied linguistics. Contributions by both seasoned and junior scholars feature empirical studies and methodological and/or theoretical discussions of technological tools used (or tools that can be used) for conducting research into various aspects of second language learning and acquisition. This book will primarily appeal to academic specialists, practitioners, and professionals in the field of applied linguistics and second language education. The book will also be informative for scholars and professionals in disciplines such as educational technology and TESOL.




Computational and Corpus Approaches to Chinese Language Learning


Book Description

This book presents a collection of original research articles that showcase the state of the art of research in corpus and computational linguistic approaches to Chinese language teaching, learning and assessment. It offers a comprehensive set of corpus resources and natural language processing tools that are useful for teaching, learning and assessing Chinese as a second or foreign language; methods for implementing such resources and techniques in Chinese pedagogy and assessment; as well as research findings on the effectiveness of using such resources and techniques in various aspects of Chinese pedagogy and assessment.




Learner Corpora in Language Testing and Assessment


Book Description

The aim of this volume is to highlight the benefits and potential of using learner corpora for the testing and assessment of L2 proficiency in both speaking and writing, reflecting the growing importance of learner corpora in applied linguistics and second language acquisition research. Identifying several desiderata for future research and practice, the volume presents a selection of original studies, covering a variety of different languages. It features studies that present very thoroughly compiled new corpus resources which are tailor-made and ready for analysis in LTA, new tools for the automatic assessment of proficiency levels, and new methods of (self-)assessment with the help of learner corpora. Other studies suggest innovative research methodologies of how proficiency can be operationalized through learner corpus data. The volume is of particular interest to researchers in (applied) corpus linguistics, learner corpus research, language testing and assessment, as well as for materials developers and language teachers.




The Cambridge Handbook of Corrective Feedback in Second Language Learning and Teaching


Book Description

Bringing together state-of-the-art chapters written by leading scholars, this volume provides a comprehensive reference on theory and research of corrective feedback. It will be a key resource for researchers, graduate students, teachers and teacher educators who are interested in the role of feedback in second language teaching and learning.