Automated Knowledge Acquisition


Book Description

This tutorial provides clear explanations of techniques for automated knowledge acquisition. The techniques covered include: decision tree methods, progressive rule generation, explanation-based learning, artificial neural networks, and genetic algorithm approaches. The book is suitable for both advanced undergraduate and graduate students and computer professionals.




Automating Knowledge Acquisition for Expert Systems


Book Description

In June of 1983, our expert systems research group at Carnegie Mellon University began to work actively on automating knowledge acquisition for expert systems. In the last five years, we have developed several tools under the pressure and influence of building expert systems for business and industry. These tools include the five described in chapters 2 through 6 - MORE, MOLE, SALT, KNACK and SIZZLE. One experiment, conducted jointly by developers at Digital Equipment Corporation, the Soar research group at Carnegie Mellon, and members of our group, explored automation of knowledge acquisition and code development for XCON (also known as R1), a production-level expert system for configuring DEC computer systems. This work influenced the development of RIME, a programming methodology developed at Digital which is the subject of chapter 7. This book describes the principles that guided our work, looks in detail at the design and operation of each tool or methodology, and reports some lessons learned from the enterprise. of the work, brought out in the introductory chapter, is A common theme that much power can be gained by understanding the roles that domain knowledge plays in problem solving. Each tool can exploit such an understanding because it focuses on a well defined problem-solving method used by the expert systems it builds. Each tool chapter describes the basic problem-solving method assumed by the tool and the leverage provided by committing to the method.




Knowledge Acquisition for Expert Systems


Book Description

Building an expert system involves eliciting, analyzing, and interpreting the knowledge that a human expert uses when solving problems. Expe rience has shown that this process of "knowledge acquisition" is both difficult and time consuming and is often a major bottleneck in the production of expert systems. Unfortunately, an adequate theoretical basis for knowledge acquisition has not yet been established. This re quires a classification of knowledge domains and problem-solving tasks and an improved understanding of the relationship between knowledge structures in human and machine. In the meantime, expert system builders need access to information about the techniques currently being employed and their effectiveness in different applications. The aim of this book, therefore, is to draw on the experience of AI scientists, cognitive psychologists, and knowledge engineers in discussing particular acquisition techniques and providing practical advice on their application. Each chapter provides a detailed description of a particular technique or methodology applied within a selected task domain. The relative strengths and weaknesses of the tech nique are summarized at the end of each chapter with some suggested guidelines for its use. We hope that this book will not only serve as a practical handbook for expert system builders, but also be of interest to AI and cognitive scientists who are seeking to develop a theory of knowledge acquisition for expert systems.




Machine Learning Proceedings 1991


Book Description

Machine Learning




Artificial Intelligence


Book Description

This book constitutes the proceedings of the 18th Russian Conference on Artificial Intelligence, RCAI 2020, held in Moscow, Russia, in October 2020. The 27 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 140 submissions. The conference deals with a wide range of topics, including data mining and knowledge discovery, text mining, reasoning, decisionmaking, natural language processing, vision, intelligent robotics, multi-agent systems,machine learning, AI in applied systems, and ontology engineering.




A Future for Knowledge Acquisition


Book Description

In the last few years rapid advances have been made in reproductive medicine, making it necessary for those involved to regularly update their knowledge. The purpose of this book is to describe the state of the art in this field, making it possible for the reader to gain an orientation among all the diagnostic and therapeutic potentials of modern reproductive medicine in order to advise patients fully. Chapters from the fields of gynecology, and reproductive medicine in a specific sense provide knowledge about these subjects. Authors of international standing have contributed chapters on their specialties. These chapters together form a book describing the state of the art in the diagnosis and therapy of sterility in gynecology and andrology.










Knowledge Acquisition


Book Description

This book presents a practical view of the knowledge acquisition process, its methodologies and techniques, in order to enable readers to develop expert systems knowledge bases more effectively. It strikes a balance between presenting (1) summaries of research in the field of knowledge acquisition and (2) methodologies and techniques that have been applied and tested on numerous programs in various contexts. Written for novice knowledge engineers or others tasked with acquiring knowledge for the systematic development of expert systems. The presentation of the material does not presume a background in either computer science or artificial intelligence.




Advances in Information Systems and Technologies


Book Description

This book contains a selection of articles from The 2013 World Conference on Information Systems and Technologies (WorldCIST'13), a global forum for researchers and practitioners to present and discuss the most recent innovations, trends, results, experiences and concerns in the several perspectives of Information Systems and Technologies. The main topics covered are: Information and Knowledge Management; Organizational Models and Information Systems; Intelligent and Decision Support Systems; Software Systems, Architectures, Applications and Tools; Computer Networks, Mobility and Pervasive Systems; Radar Technologies; and Human-Computer Interaction.