Automated Software Engineering: A Deep Learning-Based Approach


Book Description

This book discusses various open issues in software engineering, such as the efficiency of automated testing techniques, predictions for cost estimation, data processing, and automatic code generation. Many traditional techniques are available for addressing these problems. But, with the rapid changes in software development, they often prove to be outdated or incapable of handling the software’s complexity. Hence, many previously used methods are proving insufficient to solve the problems now arising in software development. The book highlights a number of unique problems and effective solutions that reflect the state-of-the-art in software engineering. Deep learning is the latest computing technique, and is now gaining popularity in various fields of software engineering. This book explores new trends and experiments that have yielded promising solutions to current challenges in software engineering. As such, it offers a valuable reference guide for a broad audience including systems analysts, software engineers, researchers, graduate students and professors engaged in teaching software engineering.




Theoretical Aspects of Software Engineering


Book Description

This book constitutes the proceedings of the 17th International Conference on Theoretical Aspects of Software Engineering, TASE 2023, held in Bristol, UK, July 4–6, 2023. The 19 full papers and 2 short papers included in this book were carefully reviewed and selected from 49 submissions. They cover the following areas: distributed and concurrent systems; cyber-physical systems; embedded and real-time systems; object-oriented systems; quantum computing; formal verification and program semantics; static analysis; formal methods; verification and testing for AI systems; and AI for formal methods.




Machine Learning Applications In Software Engineering


Book Description

Machine learning deals with the issue of how to build computer programs that improve their performance at some tasks through experience. Machine learning algorithms have proven to be of great practical value in a variety of application domains. Not surprisingly, the field of software engineering turns out to be a fertile ground where many software development and maintenance tasks could be formulated as learning problems and approached in terms of learning algorithms. This book deals with the subject of machine learning applications in software engineering. It provides an overview of machine learning, summarizes the state-of-the-practice in this niche area, gives a classification of the existing work, and offers some application guidelines. Also included in the book is a collection of previously published papers in this research area.







Deep Learning Approaches for Spoken and Natural Language Processing


Book Description

This book provides insights into how deep learning techniques impact language and speech processing applications. The authors discuss the promise, limits and the new challenges in deep learning. The book covers the major differences between the various applications of deep learning and the classical machine learning techniques. The main objective of the book is to present a comprehensive survey of the major applications and research oriented articles based on deep learning techniques that are focused on natural language and speech signal processing. The book is relevant to academicians, research scholars, industrial experts, scientists and post graduate students working in the field of speech signal and natural language processing and would like to add deep learning to enhance capabilities of their work. Discusses current research challenges and future perspective about how deep learning techniques can be applied to improve NLP and speech processing applications; Presents and escalates the research trends and future direction of language and speech processing; Includes theoretical research, experimental results, and applications of deep learning.




Mobile Application Development: Practice and Experience


Book Description

The book constitutes proceedings of the 12th Industry Symposium held in conjunction with the 18th edition of the International Conference on Distributed Computing and Intelligent Technology (ICDCIT 2022). The focus of the industry symposium is on Mobile Application Development: Practice and Experience. This book focuses on software engineering research and practice supporting any aspects of mobile application development. The book discusses findings in the areas of mobile application analysis, models for generating these applications, testing, debugging & repair, localization & globalization, app review analytics, app store mining, app beyond smartphones and tablets, app deployment, maintenance, and reliability of apps, industrial case studies of automated software engineering for mobile apps, etc. Papers included in the book describe new or improved ways to handle these aspects or address them in a more unified manner, discussing benefits, limitations, and costs of provided solutions. The volume will be useful for master, research students as well as industry professionals.




Developments in Information & Knowledge Management for Business Applications


Book Description

This book provides practical knowledge on different aspects of information and knowledge management in businesses. In contemporary unstable time, enterprises/businesses deal with various challenges—such as large-scale competitions, high levels of uncertainty and risk, rush technological advancements, while increasing customer requirements. Thus, businesses work continually on improving efficiency of their operations and resources towards enabling sustainable solutions based on the knowledge and information accumulated previously. Consequently, this third volume of our subline persists to highlight different approaches of handling enterprise knowledge/information management directing to the importance of unceasing progress of structural management for the steady growth. We look forward that the works of this volume can encourage and initiate further research on this topic.




Mobile OS Vulnerabilities


Book Description

This is book offers in-depth analysis of security vulnerabilities in different mobile operating systems. It provides methodology and solutions for handling Android malware and vulnerabilities and transfers the latest knowledge in machine learning and deep learning models towards this end. Further, it presents a comprehensive analysis of software vulnerabilities based on different technical parameters such as causes, severity, techniques, and software systems’ type. Moreover, the book also presents the current state of the art in the domain of software threats and vulnerabilities. This would help analyze various threats that a system could face, and subsequently, it could guide the securityengineer to take proactive and cost-effective countermeasures. Security threats are escalating exponentially, thus posing a serious challenge to mobile platforms. Android and iOS are prominent due to their enhanced capabilities and popularity among users. Therefore, it is important to compare these two mobile platforms based on security aspects. Android proved to be more vulnerable compared to iOS. The malicious apps can cause severe repercussions such as privacy leaks, app crashes, financial losses (caused by malware triggered premium rate SMSs), arbitrary code installation, etc. Hence, Android security is a major concern amongst researchers as seen in the last few years. This book provides an exhaustive review of all the existing approaches in a structured format. The book also focuses on the detection of malicious applications that compromise users' security and privacy, the detection performance of the different program analysis approach, and the influence of different input generators during static and dynamic analysis on detection performance. This book presents a novel method using an ensemble classifier scheme for detecting malicious applications, which is less susceptible to the evolution of the Android ecosystem and malware compared to previous methods. The book also introduces an ensemble multi-class classifier scheme to classify malware into known families. Furthermore, we propose a novel framework of mapping malware to vulnerabilities exploited using Android malware’s behavior reports leveraging pre-trained language models and deep learning techniques. The mapped vulnerabilities can then be assessed on confidentiality, integrity, and availability on different Android components and sub-systems, and different layers.




Dependable Software Engineering. Theories, Tools, and Applications


Book Description

This book constitutes the proceedings of the 9th International Symposium on Dependable Software Engineering, SETTA 2023, held in Nanjing, China, during November 27-29, 2023. The 24 full papers presented in this volume were carefully reviewed and selected from 78 submissions. They deal with latest research results and ideas on bridging the gap between formal methods and software engineering.




Computational Methods and Data Engineering


Book Description

The book features original papers from International Conference on Computational Methods and Data Engineering (ICCMDE 2021), organized by School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India, during November 25–26, 2021. The book covers innovative and cutting-edge work of researchers, developers, and practitioners from academia and industry working in the area of advanced computing.