Utilizing Data and Knowledge Mining for Probabilistic Knowledge Bases


Book Description

Problems can arise whenever inferencing is attempted on a knowledge base that is incomplete. Our work shows that data mining techniques can be applied to fill in incomplete areas in Bayesian Knowledge Bases (BKBs), as well as in other knowledge-based systems utilizing probabilistic representations. The problem of inconsistency in BKBs has been addressed in previous work, where reinforcement learning techniques from neural networks were applied. However, the issue of automatically solving incompleteness in BKBs has yet to be addressed. Presently, incompleteness in BKBs is repaired through the application of traditional knowledge acquisition techniques. We show how association rules can be extracted from databases in order to replace excluded information and express missing relationships. A methodology for incorporating those results while maintaining a consistent knowledge base is also included.







Proceedings


Book Description







Database Theory and Application, Bio-Science and Bio-Technology


Book Description

This book comprises selected papers of the International Conferences, DTA and BSBT 2011, held as Part of the Future Generation Information Technology Conference, FGIT 2011, in Conjunction with GDC 2011, Jeju Island, Korea, in December 2011. The papers presented were carefully reviewed and selected from numerous submissions and focuse on the various aspects of database theory and application, and bio-science and bio-technology.







Knowledge Integration Methods for Probabilistic Knowledge-based Systems


Book Description

Knowledge-based systems and solving knowledge integrating problems have seen a great surge of research activity in recent years. Knowledge Integration Methods provides a wide snapshot of building knowledge-based systems, inconsistency measures, methods for handling consistency, and methods for integrating knowledge bases. The book also provides the mathematical background to solving problems of restoring consistency and integrating probabilistic knowledge bases in the integrating process. The research results presented in the book can be applied in decision support systems, semantic web systems, multimedia information retrieval systems, medical imaging systems, cooperative information systems, and more. This text will be useful for computer science graduates and PhD students, in addition to researchers and readers working on knowledge management and ontology interpretation.




Knowledge Discovery in Databases


Book Description

Knowledge Discovery in Databases brings together current research on the exciting problem of discovering useful and interesting knowledge in databases. It spans many different approaches to discovery, including inductive learning, bayesian statistics, semantic query optimization, knowledge acquisition for expert systems, information theory, and fuzzy 1 sets.The rapid growth in the number and size of databases creates a need for tools and techniques for intelligent data understanding. Relationships and patterns in data may enable a manufacturer to discover the cause of a persistent disk failure or the reason for consumer complaints. But today's databases hide their secrets beneath a cover of overwhelming detail. The task of uncovering these secrets is called discovery in databases. This loosely defined subfield of machine learning is concerned with discovery from large amounts of possible uncertain data. Its techniques range from statistics to the use of domain knowledge to control search.Following an overview of knowledge discovery in databases, thirty technical chapters are grouped in seven parts which cover discovery of quantitative laws, discovery of qualitative laws, using knowledge in discovery, data summarization, domain specific discovery methods, integrated and multi-paradigm systems, and methodology and application issues. An important thread running through the collection is reliance on domain knowledge, starting with general methods and progressing to specialized methods where domain knowledge is built in. Gregory Piatetski-Shapiro is Senior Member of Technical Staff and Principal Investigator of the Knowledge Discovery Project at GTE Laboratories. William Frawley is Principal Member of Technical Staff at GTE and Principal Investigator of the Learning in Expert Domains Project.