Automorphic Representations and L-Functions for the General Linear Group:


Book Description

This graduate-level textbook provides an elementary exposition of the theory of automorphic representations and L-functions for the general linear group in an adelic setting. The authors keep definitions to a minimum and repeat them when reintroduced so that the book is accessible from any entry point, and with no prior knowledge of representation theory. They also include concrete examples of both global and local representations of GL(n), and present their associated L-functions. The theory is developed from first principles for GL(1), then carefully extended to GL(2) with complete detailed proofs of key theorems. Several of the proofs are here presented for the first time, including Jacquet's simple and elegant proof of the tensor product theorem. Finally, the higher rank situation of GL(n) is given a detailed treatment. Containing numerous exercises, this book will motivate students and researchers to begin working in this fertile field of research.




Automorphic Representations and L-Functions for the General Linear Group: Volume 1


Book Description

This graduate-level textbook provides an elementary exposition of the theory of automorphic representations and L-functions for the general linear group in an adelic setting. Definitions are kept to a minimum and repeated when reintroduced so that the book is accessible from any entry point, and with no prior knowledge of representation theory. The book includes concrete examples of global and local representations of GL(n), and presents their associated L-functions. In Volume 1, the theory is developed from first principles for GL(1), then carefully extended to GL(2) with complete detailed proofs of key theorems. Several proofs are presented for the first time, including Jacquet's simple and elegant proof of the tensor product theorem. In Volume 2, the higher rank situation of GL(n) is given a detailed treatment. Containing numerous exercises by Xander Faber, this book will motivate students and researchers to begin working in this fertile field of research.




Automorphic Representations and L-Functions for the General Linear Group:


Book Description

This graduate-level textbook provides an elementary exposition of the theory of automorphic representations and L-functions for the general linear group in an adelic setting. Definitions are kept to a minimum and repeated when reintroduced so that the book is accessible from any entry point, and with no prior knowledge of representation theory. The book includes concrete examples of global and local representations of GL(n), and presents their associated L-functions. In Volume 1, the theory is developed from first principles for GL(1), then carefully extended to GL(2) with complete detailed proofs of key theorems. Several proofs are presented for the first time, including Jacquet's simple and elegant proof of the tensor product theorem. In Volume 2, the higher rank situation of GL(n) is given a detailed treatment. Containing numerous exercises, this book will motivate students and researchers to begin working in this fertile field of research.




Automorphic Forms, Representations and $L$-Functions


Book Description

Part 2 contains sections on Automorphic representations and $L$-functions, Arithmetical algebraic geometry and $L$-functions




Automorphic Forms on GL (2)


Book Description




Topics in Classical Automorphic Forms


Book Description

This volume discusses various perspectives of the theory of automorphic forms drawn from the author's notes from a Rutgers University graduate course. In addition to detailed and often nonstandard treatment of familiar theoretical topics, the author also gives special attention to such subjects as theta- functions and representatives by quadratic forms. Annotation copyrighted by Book News, Inc., Portland, OR




Classical and Multilinear Harmonic Analysis: Volume 1


Book Description

This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.







Zeta Integrals, Schwartz Spaces and Local Functional Equations


Book Description

This book focuses on a conjectural class of zeta integrals which arose from a program born in the work of Braverman and Kazhdan around the year 2000, the eventual goal being to prove the analytic continuation and functional equation of automorphic L-functions. Developing a general framework that could accommodate Schwartz spaces and the corresponding zeta integrals, the author establishes a formalism, states desiderata and conjectures, draws implications from these assumptions, and shows how known examples fit into this framework, supporting Sakellaridis' vision of the subject. The collected results, both old and new, and the included extensive bibliography, will be valuable to anyone who wishes to understand this program, and to those who are already working on it and want to overcome certain frequently occurring technical difficulties.