Automorphic Representations, L-Functions and Applications: Progress and Prospects


Book Description

This volume is the proceedings of the conference on Automorphic Representations, L-functions and Applications: Progress and Prospects, held at the Department of Mathematics of The Ohio State University, March 27–30, 2003, in honor of the 60th birthday of Steve Rallis. The theory of automorphic representations, automorphic L-functions and their applications to arithmetic continues to be an area of vigorous and fruitful research. The contributed papers in this volume represent many of the most recent developments and directions, including Rankin–Selberg L-functions (Bump, Ginzburg–Jiang–Rallis, Lapid–Rallis) the relative trace formula (Jacquet, Mao–Rallis) automorphic representations (Gan–Gurevich, Ginzburg–Rallis–Soudry) representation theory of p-adic groups (Baruch, Kudla–Rallis, Mœglin, Cogdell–Piatetski-Shapiro–Shahidi) p-adic methods (Harris–Li–Skinner, Vigneras), and arithmetic applications (Chinta–Friedberg–Hoffstein). The survey articles by Bump, on the Rankin–Selberg method, and by Jacquet, on the relative trace formula, should be particularly useful as an introduction to the key ideas about these important topics. This volume should be of interest both to researchers and students in the area of automorphic representations, as well as to mathematicians in other areas interested in having an overview of current developments in this important field.




Automorphic Forms, Representations and $L$-Functions


Book Description

Part 2 contains sections on Automorphic representations and $L$-functions, Arithmetical algebraic geometry and $L$-functions




Eisenstein Series and Automorphic $L$-Functions


Book Description

This book presents a treatment of the theory of $L$-functions developed by means of the theory of Eisenstein series and their Fourier coefficients, a theory which is usually referred to as the Langlands-Shahidi method. The information gathered from this method, when combined with the converse theorems of Cogdell and Piatetski-Shapiro, has been quite sufficient in establishing a number of new cases of Langlands functoriality conjecture; at present, some of these cases cannot be obtained by any other method. These results have led to far-reaching new estimates for Hecke eigenvalues of Maass forms, as well as definitive solutions to certain problems in analytic and algebraic number theory. This book gives a detailed treatment of important parts of this theory, including a rather complete proof of Casselman-Shalika's formula for unramified Whittaker functions as well as a general treatment of the theory of intertwining operators. It also covers in some detail the global aspects of the method as well as some of its applications to group representations and harmonic analysis. This book is addressed to graduate students and researchers who are interested in the Langlands program in automorphic forms and its connections with number theory.




Analytic Properties of Automorphic L-Functions


Book Description

Analytic Properties of Automorphic L-Functions is a three-chapter text that covers considerable research works on the automorphic L-functions attached by Langlands to reductive algebraic groups. Chapter I focuses on the analysis of Jacquet-Langlands methods and the Einstein series and Langlands’ so-called “Euler products . This chapter explains how local and global zeta-integrals are used to prove the analytic continuation and functional equations of the automorphic L-functions attached to GL(2). Chapter II deals with the developments and refinements of the zeta-inetgrals for GL(n). Chapter III describes the results for the L-functions L (s, ?, r), which are considered in the constant terms of Einstein series for some quasisplit reductive group. This book will be of value to undergraduate and graduate mathematics students.




Automorphic Forms and L-Functions for the Group GL(n,R)


Book Description

L-functions associated to automorphic forms encode all classical number theoretic information. They are akin to elementary particles in physics. This book provides an entirely self-contained introduction to the theory of L-functions in a style accessible to graduate students with a basic knowledge of classical analysis, complex variable theory, and algebra. Also within the volume are many new results not yet found in the literature. The exposition provides complete detailed proofs of results in an easy-to-read format using many examples and without the need to know and remember many complex definitions. The main themes of the book are first worked out for GL(2,R) and GL(3,R), and then for the general case of GL(n,R). In an appendix to the book, a set of Mathematica functions is presented, designed to allow the reader to explore the theory from a computational point of view.




Eisenstein Series and Automorphic Representations


Book Description

Detailed exposition of automorphic representations and their relation to string theory, for mathematicians and theoretical physicists.




Automorphic Forms on GL (2)


Book Description




Automorphic Forms on GL (3,TR)


Book Description




Multiple Dirichlet Series, L-functions and Automorphic Forms


Book Description

Multiple Dirichlet Series, L-functions and Automorphic Forms gives the latest advances in the rapidly developing subject of Multiple Dirichlet Series, an area with origins in the theory of automorphic forms that exhibits surprising and deep connections to crystal graphs and mathematical physics. As such, it represents a new way in which areas including number theory, combinatorics, statistical mechanics, and quantum groups are seen to fit together. The volume also includes papers on automorphic forms and L-functions and related number-theoretic topics. This volume will be a valuable resource for graduate students and researchers in number theory, combinatorics, representation theory, mathematical physics, and special functions. Contributors: J. Beineke, B. Brubaker, D. Bump, G. Chinta, G. Cornelissen, C.A. Diaconu, S. Frechette, S. Friedberg, P. Garrett, D. Goldfeld, P.E. Gunnells, B. Heim, J. Hundley, D. Ivanov, Y. Komori, A.V. Kontorovich, O. Lorscheid, K. Matsumoto, P.J. McNamara, S.J. Patterson, M. Suzuki, H. Tsumura.




Representation Theory and Automorphic Forms


Book Description

This volume uses a unified approach to representation theory and automorphic forms. It collects papers, written by leading mathematicians, that track recent progress in the expanding fields of representation theory and automorphic forms and their association with number theory and differential geometry. Topics include: Automorphic forms and distributions, modular forms, visible-actions, Dirac cohomology, holomorphic forms, harmonic analysis, self-dual representations, and Langlands Functoriality Conjecture, Both graduate students and researchers will find inspiration in this volume.