Automorphisms of Affine Spaces


Book Description

Automorphisms of Affine Spaces describes the latest results concerning several conjectures related to polynomial automorphisms: the Jacobian, real Jacobian, Markus-Yamabe, Linearization and tame generators conjectures. Group actions and dynamical systems play a dominant role. Several contributions are of an expository nature, containing the latest results obtained by the leaders in the field. The book also contains a concise introduction to the subject of invertible polynomial maps which formed the basis of seven lectures given by the editor prior to the main conference. Audience: A good introduction for graduate students and research mathematicians interested in invertible polynomial maps.




Automorphisms in Birational and Affine Geometry


Book Description

The main focus of this volume is on the problem of describing the automorphism groups of affine and projective varieties, a classical subject in algebraic geometry where, in both cases, the automorphism group is often infinite dimensional. The collection covers a wide range of topics and is intended for researchers in the fields of classical algebraic geometry and birational geometry (Cremona groups) as well as affine geometry with an emphasis on algebraic group actions and automorphism groups. It presents original research and surveys and provides a valuable overview of the current state of the art in these topics. Bringing together specialists from projective, birational algebraic geometry and affine and complex algebraic geometry, including Mori theory and algebraic group actions, this book is the result of ensuing talks and discussions from the conference “Groups of Automorphisms in Birational and Affine Geometry” held in October 2012, at the CIRM, Levico Terme, Italy. The talks at the conference highlighted the close connections between the above-mentioned areas and promoted the exchange of knowledge and methods from adjacent fields.







Polynomial Automorphisms


Book Description

Motivated by some notorious open problems, such as the Jacobian conjecture and the tame generators problem, the subject of polynomial automorphisms has become a rapidly growing field of interest. This book, the first in the field, collects many of the results scattered throughout the literature. It introduces the reader to a fascinating subject and brings him to the forefront of research in this area. Some of the topics treated are invertibility criteria, face polynomials, the tame generators problem, the cancellation problem, exotic spaces, DNA for polynomial automorphisms, the Abhyankar-Moh theorem, stabilization methods, dynamical systems, the Markus-Yamabe conjecture, group actions, Hilbert's 14th problem, various linearization problems and the Jacobian conjecture. The work is essentially self-contained and aimed at the level of beginning graduate students. Exercises are included at the end of each section. At the end of the book there are appendices to cover used material from algebra, algebraic geometry, D-modules and Gröbner basis theory. A long list of ''strong'' examples and an extensive bibliography conclude the book.




Affine Space Fibrations


Book Description

Affine algebraic geometry has progressed remarkably in the last half a century, and its central topics are affine spaces and affine space fibrations. This authoritative book is aimed at graduate students and researchers alike, and studies the geometry and topology of morphisms of algebraic varieties whose general fibers are isomorphic to the affine space while describing structures of algebraic varieties with such affine space fibrations.




Affine Algebraic Geometry


Book Description

The present volume grew out of an international conference on affine algebraic geometry held in Osaka, Japan during 3-6 March 2011 and is dedicated to Professor Masayoshi Miyanishi on the occasion of his 70th birthday. It contains 16 refereed articles in the areas of affine algebraic geometry, commutative algebra and related fields, which have been the working fields of Professor Miyanishi for almost 50 years. Readers will be able to find recent trends in these areas too. The topics contain both algebraic and analytic, as well as both affine and projective, problems. All the results treated in this volume are new and original which subsequently will provide fresh research problems to explore. This volume is suitable for graduate students and researchers in these areas.




Encyclopaedia of Mathematics (set)


Book Description

The Encyclopaedia of Mathematics is the most up-to-date, authoritative and comprehensive English-language work of reference in mathematics which exists today. With over 7,000 articles from `A-integral' to `Zygmund Class of Functions', supplemented with a wealth of complementary information, and an index volume providing thorough cross-referencing of entries of related interest, the Encyclopaedia of Mathematics offers an immediate source of reference to mathematical definitions, concepts, explanations, surveys, examples, terminology and methods. The depth and breadth of content and the straightforward, careful presentation of the information, with the emphasis on accessibility, makes the Encyclopaedia of Mathematics an immensely useful tool for all mathematicians and other scientists who use, or are confronted by, mathematics in their work. The Enclyclopaedia of Mathematics provides, without doubt, a reference source of mathematical knowledge which is unsurpassed in value and usefulness. It can be highly recommended for use in libraries of universities, research institutes, colleges and even schools.




Polynomial Automorphisms and the Jacobian Conjecture


Book Description

This book is an extension to Arno van den Essen's Polynomial Automorphisms and the Jacobian Conjecture published in 2000. Many new exciting results have been obtained in the past two decades, including the solution of Nagata's Conjecture, the complete solution of Hilbert's fourteenth problem, the equivalence of the Jacobian Conjecture and the Dixmier Conjecture, the symmetric reduction of the Jacobian Conjecture, the theory of Mathieu-Zhao spaces and counterexamples to the Cancellation problem in positive characteristic. These and many more results are discussed in detail in this work. The book is aimed at graduate students and researchers in the field of Affine Algebraic Geometry. Exercises are included at the end of each section.




Geometry VI


Book Description

This book treats that part of Riemannian geometry related to more classical topics in a very original, clear and solid style. The author successfully combines the co-ordinate and invariant approaches to differential geometry, giving the reader tools for practical calculations as well as a theoretical understanding of the subject.




Algebra


Book Description

This book presents modern algebra from first principles and is accessible to undergraduates or graduates. It combines standard materials and necessary algebraic manipulations with general concepts that clarify meaning and importance. This conceptual approach to algebra starts with a description of algebraic structures by means of axioms chosen to suit the examples, for instance, axioms for groups, rings, fields, lattices, and vector spaces. This axiomatic approach—emphasized by Hilbert and developed in Germany by Noether, Artin, Van der Waerden, et al., in the 1920s—was popularized for the graduate level in the 1940s and 1950s to some degree by the authors' publication of A Survey of Modern Algebra. The present book presents the developments from that time to the first printing of this book. This third edition includes corrections made by the authors.