Aviation Systems


Book Description

This book aims to provide comprehensive coverage of the field of air transportation, giving attention to all major aspects, such as aviation regulation, economics, management and strategy. The book approaches aviation as an interrelated economic system and in so doing presents the “big picture” of aviation in the market economy. It explains the linkages between domains such as politics, society, technology, economy, ecology, regulation and how these influence each other. Examples of airports and airlines, and case studies in each chapter support the application-oriented approach. Students and researchers in business administration with a focus on the aviation industry, as well as professionals in the industry looking to refresh or broaden their knowledge of the field will benefit from this book.




Aircraft Systems Integration of Air-Launched Weapons


Book Description

From the earliest days of aviation where the pilot would drop simple bombs by hand, to the highly agile, stealthy aircraft of today that can deliver smart ordnance with extreme accuracy, engineers have striven to develop the capability to deliver weapons against targets reliably, safely and with precision. Aircraft Systems Integration of Air-Launched Weapons introduces the various aspects of weapons integration, primarily from the aircraft systems integration viewpoint, but also considers key parts of the weapon and the desired interactions with the aircraft required for successful target engagement. Key features: Addresses the broad range of subjects that relate directly to the systems integration of air-launched weapons with aircraft, such as the integration process, system and subsystem architectures, the essential contribution that open, international standards have on improving interoperability and reducing integration costs and timescales Describes the recent history of how industry and bodies such as NATO have driven the need for greater interoperability between weapons and aircraft and worked to reduce the cost and timescales associated with the systems integration of complex air-launched weapons with aircraft Explores future initiatives and technologies relating to the reduction of systems integration costs and timescales The systems integration of air-launched weapons with aircraft requires a multi-disciplinary set of engineering capabilities. As a typical weapons integration life-cycle spans several years, new engineers have to learn the skills required by on-the-job training and working with experienced weapons integrators. Aircraft Systems Integration of Air-Launched Weapons augments hands-on experience, thereby enabling the development of subject matter expertise more quickly and in a broader context than would be achieved by working through the life-cycle on one specific project. This book also serves as a useful revision source for experienced engineers in the field.




Aircraft Systems for Professional Pilots


Book Description

Aircraft Systems For Professional Pilots from Peter Vosbury and William Kohlruss of Embry Riddle Aeronautical University covers all airframe and engine-related systems that are required for an aircraft to be operated effectively, efficiently, and safely by the flight crew. This book is intended for individuals who are learning to fly with their goal being a career as a pilot in corporate, commercial, or military aviation or for the already professional pilot who wants a review of how systems work.A commercial airline pilot instinctively knows that their airplane has a hydraulic system, but they may have forgotten the details of what type of pump is used and how the pump works. This book will provide all those details.The systems discussed cover everything from small airplanes like a Cessna 172, to large commercial airliners like a Boeing 787.




Advanced Aircraft Systems


Book Description

This book explains the theory, components, and practical applications of systems in turboprop, turojet, and turbofan aircraft. The author clearly examines electrical, turbine engine, lubrication and coooling , and other systems.




Aircraft Systems


Book Description

This third edition of Aircraft Systems represents a timely update of the Aerospace Series’ successful and widely acclaimed flagship title. Moir and Seabridge present an in-depth study of the general systems of an aircraft – electronics, hydraulics, pneumatics, emergency systems and flight control to name but a few - that transform an aircraft shell into a living, functioning and communicating flying machine. Advances in systems technology continue to alloy systems and avionics, with aircraft support and flight systems increasingly controlled and monitored by electronics; the authors handle the complexities of these overlaps and interactions in a straightforward and accessible manner that also enhances synergy with the book’s two sister volumes, Civil Avionics Systems and Military Avionics Systems. Aircraft Systems, 3rd Edition is thoroughly revised and expanded from the last edition in 2001, reflecting the significant technological and procedural changes that have occurred in the interim – new aircraft types, increased electronic implementation, developing markets, increased environmental pressures and the emergence of UAVs. Every chapter is updated, and the latest technologies depicted. It offers an essential reference tool for aerospace industry researchers and practitioners such as aircraft designers, fuel specialists, engine specialists, and ground crew maintenance providers, as well as a textbook for senior undergraduate and postgraduate students in systems engineering, aerospace and engineering avionics.




Research Anthology on Reliability and Safety in Aviation Systems, Spacecraft, and Air Transport


Book Description

As with other transportation methods, safety issues in aircraft can result in a total loss of life. Recently, the air transport industry has come under immense scrutiny after several deaths occurred due to aircraft design and airlines that allowed improperly inspected aircraft to fly. Spacecraft too have found errors in system software that could lead to catastrophic failure. It is imperative that the aviation and aerospace industries continue to revise and refine safety protocols from the construction and design of aircraft, to secure and improve aviation systems, and to test and inspect aircraft. The Research Anthology on Reliability and Safety in Aviation Systems, Spacecraft, and Air Transport is a vital reference source that examines the latest scholarly material on the use of adaptive and assistive technologies in aviation to establish clear guidelines for the design and implementation of such technologies to better serve the needs of both military and civilian pilots. It also covers new information technology use in aviation systems to streamline the cybersecurity, decision making, planning, and design processes within the aviation industry. Highlighting a range of topics such as air navigation systems, computer simulation, and airline operations, this multi-volume book is ideally designed for pilots, scientists, engineers, aviation operators, air traffic controllers, air crash investigators, teachers, academicians, researchers, and students.




Aviation System Risks and Safety


Book Description

This book provides a solution to “rare event” problems without using the classical theory of reliability and theory of probability. This solution is based on the methodology of risk assessment as “measure of danger” (in keeping with the ICS RAS) and an expert approach to determining systems’ safety indications using Fuzzy Sets methods. Further, the book puts forward a new concept: “Reliability, Risks, and Safety” (RRS). The book’s main goal is to generalize present results and underscore the need to develop an alternative approach to safety level assessment and risk management for technical (aviation) systems in terms of Fuzzy Sets objects, in addition to traditional probabilistic safety analysis (PSA). The concept it proposes incorporates ICAO recommendations regarding proactive system control and the system’s responses to various internal and external disturbances.




Introduction to Unmanned Aircraft Systems


Book Description

Introduction to Unmanned Aircraft Systems surveys the fundamentals of unmanned aircraft system (UAS) operations, from sensors, controls, and automation to regulations, safety procedures, and human factors. It is designed for the student or layperson and thus assumes no prior knowledge of UASs, engineering, or aeronautics. Dynamic and well-illustrated, the first edition of this popular primer was created in response to a need for a suitable university-level textbook on the subject. Fully updated and significantly expanded, this new Second Edition: Reflects the proliferation of technological capability, miniaturization, and demand for aerial intelligence in a post-9/11 world Presents the latest major commercial uses of UASs and unmanned aerial vehicles (UAVs) Enhances its coverage with greater depth and support for more advanced coursework Provides material appropriate for introductory UAS coursework in both aviation and aerospace engineering programs Introduction to Unmanned Aircraft Systems, Second Edition capitalizes on the expertise of contributing authors to instill a practical, up-to-date understanding of what it takes to safely operate UASs in the National Airspace System (NAS). Complete with end-of-chapter discussion questions, this book makes an ideal textbook for a first course in UAS operations.




Aircraft as a System of Systems


Book Description

This book provides a thorough analysis of how building aircraft taps into a huge pool of knowledge, how its complexity is also reflected in the numerous process links that exchange knowledge between different groups. But unlike conventional business processes, design processes do not follow one step after another - rather, a decision made at one point in the design is communicated to other areas of the design, which may in turn feed back new constraints that force the first decision to be revised.




Aerospace Avionics Systems


Book Description

Aerospace Avionics Systems: A Modern Synthesis is the first new textbook on inertial navigation since the mid-1970s. This far-reaching, up-to-date, and heavily illustrated volume meets the needs of first-year graduate students in aeronautical engineering as well as the demands of professionals requiring current information. The well-respected author presents a balanced combination of theory and up-to-date practice and application in inertial navigation, devoting the largest amount of space to topics that will be useful to most readers or that are not adequately or clearly treated elsewhere in the technical literature.