Azure Modern Data Architecture


Book Description

Key Features Discover the key drivers of successful Azure architecture Practical guidance Focus on scalability and performance Expert authorship Book Description This book presents a guide to design and implement scalable, secure, and efficient data solutions in the Azure cloud environment. It provides Data Architects, developers, and IT professionals who are responsible for designing and implementing data solutions in the Azure cloud environment with the knowledge and tools needed to design and implement data solutions using the latest Azure data services. It covers a wide range of topics, including data storage, data processing, data analysis, and data integration. In this book, you will learn how to select the appropriate Azure data services, design a data processing pipeline, implement real-time data processing, and implement advanced analytics using Azure Databricks and Azure Synapse Analytics. You will also learn how to implement data security and compliance, including data encryption, access control, and auditing. Whether you are building a new data architecture from scratch or migrating an existing on premises solution to Azure, the Azure Data Architecture Guidelines are an essential resource for any organization looking to harness the power of data in the cloud. With these guidelines, you will gain a deep understanding of the principles and best practices of Azure data architecture and be equipped to build data solutions that are highly scalable, secure, and cost effective. What You Need to Use this Book? To use this book, it is recommended that readers have a basic understanding of data architecture concepts and data management principles. Some familiarity with cloud computing and Azure services is also helpful. The book is designed for data architects, data engineers, data analysts, and anyone involved in designing, implementing, and managing data solutions on the Azure cloud platform. It is also suitable for students and professionals who want to learn about Azure data architecture and its best practices.




The Modern Data Warehouse in Azure


Book Description

Build a modern data warehouse on Microsoft's Azure Platform that is flexible, adaptable, and fast—fast to snap together, reconfigure, and fast at delivering results to drive good decision making in your business. Gone are the days when data warehousing projects were lumbering dinosaur-style projects that took forever, drained budgets, and produced business intelligence (BI) just in time to tell you what to do 10 years ago. This book will show you how to assemble a data warehouse solution like a jigsaw puzzle by connecting specific Azure technologies that address your own needs and bring value to your business. You will see how to implement a range of architectural patterns using batches, events, and streams for both data lake technology and SQL databases. You will discover how to manage metadata and automation to accelerate the development of your warehouse while establishing resilience at every level. And you will know how to feed downstream analytic solutions such as Power BI and Azure Analysis Services to empower data-driven decision making that drives your business forward toward a pattern of success. This book teaches you how to employ the Azure platform in a strategy to dramatically improve implementation speed and flexibility of data warehousing systems. You will know how to make correct decisions in design, architecture, and infrastructure such as choosing which type of SQL engine (from at least three options) best meets the needs of your organization. You also will learn about ETL/ELT structure and the vast number of accelerators and patterns that can be used to aid implementation and ensure resilience. Data warehouse developers and architects will find this book a tremendous resource for moving their skills into the future through cloud-based implementations. What You Will LearnChoose the appropriate Azure SQL engine for implementing a given data warehouse Develop smart, reusable ETL/ELT processes that are resilient and easily maintained Automate mundane development tasks through tools such as PowerShell Ensure consistency of data by creating and enforcing data contracts Explore streaming and event-driven architectures for data ingestionCreate advanced staging layers using Azure Data Lake Gen 2 to feed your data warehouse Who This Book Is For Data warehouse or ETL/ELT developers who wish to implement a data warehouse project in the Azure cloud, and developers currently working in on-premise environments who want to move to the cloud, and for developers with Azure experience looking to tighten up their implementation and consolidate their knowledge




Data Management at Scale


Book Description

As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption. Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed. Examine data management trends, including technological developments, regulatory requirements, and privacy concerns Go deep into the Scaled Architecture and learn how the pieces fit together Explore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata




Cloud Scale Analytics with Azure Data Services


Book Description

A practical guide to implementing a scalable and fast state-of-the-art analytical data estate Key FeaturesStore and analyze data with enterprise-grade security and auditingPerform batch, streaming, and interactive analytics to optimize your big data solutions with easeDevelop and run parallel data processing programs using real-world enterprise scenariosBook Description Azure Data Lake, the modern data warehouse architecture, and related data services on Azure enable organizations to build their own customized analytical platform to fit any analytical requirements in terms of volume, speed, and quality. This book is your guide to learning all the features and capabilities of Azure data services for storing, processing, and analyzing data (structured, unstructured, and semi-structured) of any size. You will explore key techniques for ingesting and storing data and perform batch, streaming, and interactive analytics. The book also shows you how to overcome various challenges and complexities relating to productivity and scaling. Next, you will be able to develop and run massive data workloads to perform different actions. Using a cloud-based big data-modern data warehouse-analytics setup, you will also be able to build secure, scalable data estates for enterprises. Finally, you will not only learn how to develop a data warehouse but also understand how to create enterprise-grade security and auditing big data programs. By the end of this Azure book, you will have learned how to develop a powerful and efficient analytical platform to meet enterprise needs. What you will learnImplement data governance with Azure servicesUse integrated monitoring in the Azure Portal and integrate Azure Data Lake Storage into the Azure MonitorExplore the serverless feature for ad-hoc data discovery, logical data warehousing, and data wranglingImplement networking with Synapse Analytics and Spark poolsCreate and run Spark jobs with Databricks clustersImplement streaming using Azure Functions, a serverless runtime environment on AzureExplore the predefined ML services in Azure and use them in your appWho this book is for This book is for data architects, ETL developers, or anyone who wants to get well-versed with Azure data services to implement an analytical data estate for their enterprise. The book will also appeal to data scientists and data analysts who want to explore all the capabilities of Azure data services, which can be used to store, process, and analyze any kind of data. A beginner-level understanding of data analysis and streaming will be required.




The Azure Cloud Native Architecture Mapbook


Book Description

Improve your Azure architecture practice and set out on a cloud and cloud-native journey with this Azure cloud native architecture guide Key FeaturesDiscover the key drivers of successful Azure architectureImplement architecture maps as a compass to tackle any challengeUnderstand architecture maps in detail with the help of practical use casesBook Description Azure offers a wide range of services that enable a million ways to architect your solutions. Complete with original maps and expert analysis, this book will help you to explore Azure and choose the best solutions for your unique requirements. Starting with the key aspects of architecture, this book shows you how to map different architectural perspectives and covers a variety of use cases for each architectural discipline. You'll get acquainted with the basic cloud vocabulary and learn which strategic aspects to consider for a successful cloud journey. As you advance through the chapters, you'll understand technical considerations from the perspective of a solutions architect. You'll then explore infrastructure aspects, such as network, disaster recovery, and high availability, and leverage Infrastructure as Code (IaC) through ARM templates, Bicep, and Terraform. The book also guides you through cloud design patterns, distributed architecture, and ecosystem solutions, such as Dapr, from an application architect's perspective. You'll work with both traditional (ETL and OLAP) and modern data practices (big data and advanced analytics) in the cloud and finally get to grips with cloud native security. By the end of this book, you'll have picked up best practices and more rounded knowledge of the different architectural perspectives. What you will learnGain overarching architectural knowledge of the Microsoft Azure cloud platformExplore the possibilities of building a full Azure solution by considering different architectural perspectivesImplement best practices for architecting and deploying Azure infrastructureReview different patterns for building a distributed application with ecosystem frameworks and solutionsGet to grips with cloud-native concepts using containerized workloadsWork with AKS (Azure Kubernetes Service) and use it with service mesh technologies to design a microservices hosting platformWho this book is for This book is for aspiring Azure Architects or anyone who specializes in security, infrastructure, data, and application architecture. If you are a developer or infrastructure engineer looking to enhance your Azure knowledge, you'll find this book useful.




Cloud Architecture Patterns


Book Description

Do you need to learn about cloud computing architecture with Microsoft's Azure quickly? Read this book! It gives you just enough info on the big picture and is filled with key terminology so that you can join the discussion on cloud architecture.




Architecting Modern Data Platforms


Book Description

There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability




Data Lake Analytics on Microsoft Azure


Book Description

Get a 360-degree view of how the journey of data analytics solutions has evolved from monolithic data stores and enterprise data warehouses to data lakes and modern data warehouses. You will This book includes comprehensive coverage of how: To architect data lake analytics solutions by choosing suitable technologies available on Microsoft Azure The advent of microservices applications covering ecommerce or modern solutions built on IoT and how real-time streaming data has completely disrupted this ecosystem These data analytics solutions have been transformed from solely understanding the trends from historical data to building predictions by infusing machine learning technologies into the solutions Data platform professionals who have been working on relational data stores, non-relational data stores, and big data technologies will find the content in this book useful. The book also can help you start your journey into the data engineer world as it provides an overview of advanced data analytics and touches on data science concepts and various artificial intelligence and machine learning technologies available on Microsoft Azure. What Will You Learn You will understand the: Concepts of data lake analytics, the modern data warehouse, and advanced data analytics Architecture patterns of the modern data warehouse and advanced data analytics solutions Phases—such as Data Ingestion, Store, Prep and Train, and Model and Serve—of data analytics solutions and technology choices available on Azure under each phase In-depth coverage of real-time and batch mode data analytics solutions architecture Various managed services available on Azure such as Synapse analytics, event hubs, Stream analytics, CosmosDB, and managed Hadoop services such as Databricks and HDInsight Who This Book Is For Data platform professionals, database architects, engineers, and solution architects




Microsoft Certified Azure Data Fundamentals (Exam DP-900) Certification Guide


Book Description

Learn how to implement successful Azure Data projects and get the skills to clear the DP-900 certification exam with the help of mock tests and self-assessment scenarios for better preparation Key FeaturesGet the knowledge you need to pass the DP-900 exam on your first attemptGain fundamental knowledge of the core concepts of working with data in Azure cloud data servicesLearn through a practical approach and test yourself with mock exams at the end of the bookBook Description Passing the DP-900 Microsoft Azure Data Fundamentals exam opens the door to a myriad of opportunities for working with data services in the cloud. But it is not an easy exam and you'll need a guide to set you up for success and prepare you for a career in Microsoft Azure. Absolutely everything you need to pass the DP-900 exam is covered in this concise handbook. After an introductory chapter covering the core terms and concepts, you'll go through the various roles related to working with data in the cloud and learn the similarities and differences between relational and non-relational databases. This foundational knowledge is crucial, as you'll learn how to provision and deploy Azure's relational and non-relational services in detail later in the book. You'll also gain an understanding of how to glean insights with data analytics at both small and large scales, and how to visualize your insights with Power BI. Once you reach the end of the book, you'll be able to test your knowledge with practice tests with detailed explanations of the correct answers. By the end of this book, you will be armed with the knowledge and confidence to not only pass the DP-900 exam but also have a solid foundation from which to embark on a career in Azure data services. What you will learnExplore the concepts of IaaS and PaaS database services on AzureQuery, insert, update, and delete relational data using SQLExplore the concepts of data warehouses in AzurePerform data analytics with an Azure Synapse Analytics workspaceUpload and retrieve data in Azure Cosmos DB and Azure HDInsightProvision and deploy non-relational data services in AzureContextualize the knowledge with real-life use casesTest your progress with a mock examWho this book is for This book is for data engineers, database administrators, or aspiring data professionals getting ready to take the DP-900 exam. It will also be helpful for those looking for a bit of guidance on how to be better equipped for Azure-related job roles such as Azure database administrator or Azure data engineer. A basic understanding of core data concepts and relational and non-relational data will help you make the most out of this book, but they're not a pre-requisite.




The Definitive Guide to Azure Data Engineering


Book Description

Build efficient and scalable batch and real-time data ingestion pipelines, DevOps continuous integration and deployment pipelines, and advanced analytics solutions on the Azure Data Platform. This book teaches you to design and implement robust data engineering solutions using Data Factory, Databricks, Synapse Analytics, Snowflake, Azure SQL database, Stream Analytics, Cosmos database, and Data Lake Storage Gen2. You will learn how to engineer your use of these Azure Data Platform components for optimal performance and scalability. You will also learn to design self-service capabilities to maintain and drive the pipelines and your workloads. The approach in this book is to guide you through a hands-on, scenario-based learning process that will empower you to promote digital innovation best practices while you work through your organization’s projects, challenges, and needs. The clear examples enable you to use this book as a reference and guide for building data engineering solutions in Azure. After reading this book, you will have a far stronger skill set and confidence level in getting hands on with the Azure Data Platform. What You Will Learn Build dynamic, parameterized ELT data ingestion orchestration pipelines in Azure Data Factory Create data ingestion pipelines that integrate control tables for self-service ELT Implement a reusable logging framework that can be applied to multiple pipelines Integrate Azure Data Factory pipelines with a variety of Azure data sources and tools Transform data with Mapping Data Flows in Azure Data Factory Apply Azure DevOps continuous integration and deployment practices to your Azure Data Factory pipelines and development SQL databases Design and implement real-time streaming and advanced analytics solutions using Databricks, Stream Analytics, and Synapse Analytics Get started with a variety of Azure data services through hands-on examples Who This Book Is For Data engineers and data architects who are interested in learning architectural and engineering best practices around ELT and ETL on the Azure Data Platform, those who are creating complex Azure data engineering projects and are searching for patterns of success, and aspiring cloud and data professionals involved in data engineering, data governance, continuous integration and deployment of DevOps practices, and advanced analytics who want a full understanding of the many different tools and technologies that Azure Data Platform provides