Bacterial Biofilms


Book Description

This book examines biofilms in nature. Organized into four parts, this book addresses biofilms in wastewater treatment, inhibition of biofilm formation, biofilms and infection, and ecology of biofilms. It is designed for clinicians, researchers, and industry professionals in the fields of microbiology, biotechnology, ecology, and medicine as well as graduate and postgraduate students.




Nanoemulsions


Book Description

Fluidics, an increasingly examined topic in nanoscience and nanotechnology is often discussed with regard to the handling of fluid flow, material processing, and material synthesis in innovative devices ranging from the macroscale to the nanoscale. Nanoemulsions - Properties, Fabrications and Applications reviews key concepts in nanoscale fluid mechanics, its corresponding properties, as well as the latest trends in nanofluidics applications. With attention to the fundamentals as well as advanced applications of fluidics, this book imparts a solid knowledge base and develops skill for future problem-solving and system analysis. This is a vital resource for upper-level engineering students who want to expand their potential career opportunities and familiarize themselves with an increasingly important field.




Co-Relating Metallic Nanoparticle Characteristics and Bacterial Toxicity


Book Description

This brief gives a concise overview of nanoparticles and their microbial toxicity. It introduces various nanoparticles that are considered lethal to microbial cells (bacteria, virus and fungus) placing an emphasis on metal and metal oxide nanoparticles. The synthesis procedures (physical, chemical, microbial) that are often employed in their fabrication are also outlined. The interaction of various nanoparticles with microbes is described with attention given to the role of additives in the form of solvents, surfactants, capping materials. Commonly used experimental and analytical techniques that are often used to evaluate and determine the toxicity of nanoparticles towards different microorganisms are presented and comparative assessments on the differences between these procedures are described. The brief ends by explaining the toxicity of metal and metal oxide nanoparticles to microorganisms.




Microbial Nanotechnology


Book Description

This book provides an account of the biogenic synthesis of nanomaterials by using different microorganisms. The chapters are focused on the biosynthesis of various metal and metal oxide nanosized materials by using bacteria, actinomycetes, fungi, and algae, including mechanisms of microbial synthesis. Other chapters summarize recent developments of microbial-based nanostructures for the management of food-borne pathogens, plant pathogenic fungi, as nutrients, and biomedical applications. Microorganisms are discussed not only as biofactories for the synthesis of nanomaterials but also as removal agents of toxic metals from the environment. Exposure sources and ecotoxicity of microbially synthesized nanoparticles are also discussed.




Nano-Antimicrobials


Book Description

There is a high demand for antimicrobials for the treatment of new and emerging microbial diseases. In particular, microbes developing multidrug resistance have created a pressing need to search for a new generation of antimicrobial agents, which are effective, safe and can be used for the cure of multidrug-resistant microbial infections. Nano-antimicrobials offer effective solutions for these challenges; the details of these new technologies are presented here. The book includes chapters by an international team of experts. Chemical, physical, electrochemical, photochemical and mechanical methods of synthesis are covered. Moreover, biological synthesis using microbes, an option that is both eco-friendly and economically viable, is presented. The antimicrobial potential of different nanoparticles is also covered, bioactivity mechanisms are elaborated on, and several applications are reviewed in separate sections. Lastly, the toxicology of nano-antimicrobials is briefly assessed.




Synthesis, Properties, and Applications of Oxide Nanomaterials


Book Description

Current oxide nanomaterials knowledge to draw from and build on Synthesis, Properties, and Applications of Oxide Nanomaterials summarizes the existing knowledge in oxide-based materials research. It gives researchers one comprehensive resource that consolidates general theoretical knowledge alongside practical applications. Organized by topic for easy access, this reference: * Covers the fundamental science, synthesis, characterization, physicochemical properties, and applications of oxide nanomaterials * Explains the fundamental aspects (quantum-mechanical and thermodynamic) that determine the behavior and growth mode of nanostructured oxides * Examines synthetic procedures using top-down and bottom-up fabrication technologies involving liquid-solid or gas-solid transformations * Discusses the sophisticated experimental techniques and state-of-the-art theory used to characterize the structural and electronic properties of nanostructured oxides * Describes applications such as sorbents, sensors, ceramic materials, electrochemical and photochemical devices, and catalysts for reducing environmental pollution, transforming hydrocarbons, and producing hydrogen With its combination of theory and real-world applications plus extensive bibliographic references, Synthesis, Properties, and Applications of Oxide Nanomaterials consolidates a wealth of current, complex information in one volume for practicing chemists, physicists, and materials scientists, and for engineers and researchers in government, industry, and academia. It's also an outstanding reference for graduate students in chemistry, chemical engineering, physics, and materials science.







Trace Metals and Infectious Diseases


Book Description

Experts explore the influence of trace metals on the pathogenesis of infectious diseases. Many parts of the world in which common infectious diseases are endemic also have the highest prevalence of trace metal deficiencies or rising rates of trace metal pollution. Infectious diseases can increase human susceptibility to adverse effects of metal exposure (at suboptimal or toxic levels), and metal excess or deficiency can increase the incidence or severity of infectious diseases. The co-clustering of major infectious diseases with trace metal deficiency or toxicity has created a complex web of interactions with serious but poorly understood health repercussions, yet has been largely overlooked in animal and human studies. This book focuses on the distribution, trafficking, fate, and effects of trace metals in biological systems. Its goal is to enhance our understanding of the relationships between homeostatic mechanisms of trace metals and the pathogenesis of infectious diseases. Drawing on expertise from a range of fields, the book offers a comprehensive review of current knowledge on vertebrate metal-withholding mechanisms and the strategies employed by different microbes to avoid starvation (or poisoning). Chapters summarize current, state-of-the-art techniques for investigating pathogen-metal interactions and highlight open question to guide future research. The book makes clear that improving knowledge in this area will be instrumental to the development of novel therapeutic measures against infectious diseases. Contributors M. Leigh Ackland, Vahid Fa Andisi, Angele L. Arrieta, Michael A. Bachman, J. Sabine Becker, Robert E. Black, Julia Bornhorst, Sascha Brunke, Joseph A. Caruso, Jennifer S. Cavet, Anson C. K. Chan, Christopher H. Contag, Heran Darwin, George V. Dedoussis, Rodney R. Dietert, Victor J. DiRita, Carol A. Fierke, Tamara Garcia-Barrera, David P. Giedroc, Peter-Leon Hagedoorn, James A. Imlay, Marek J. Kobylarz, Joseph Lemire, Wenwen Liu, Slade A. Loutet, Wolfgang Maret, Andreas Matusch, Trevor F. Moraes, Michael E. P. Murphy, Maribel Navarro, Jerome O. Nriagu, Ana-Maria Oros-Peusquens, Elisabeth G. Pacyna, Jozef M. Pacyna, Robert D. Perry, John M. Pettifor, Stephanie Pfaffen, Dieter Rehder, Lothar Rink, Anthony B. Schryvers, Ellen K. Silbergeld, Eric P. Skaar, Miguel C. P. Soares, Kyrre Sundseth, Dennis J. Thiele, Richard B. Thompson, Meghan M. Verstraete, Gonzalo Visbal, Fudi Wang, Mian Wang, Thomas J. Webster, Jeffrey N. Weiser, Günter Weiss, Inga Wessels, Bin Ye, Judith T. Zelikoff, Lihong Zhang




Iron Oxide Nanoparticles for Biomedical Applications


Book Description

Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application begins with several chapters covering the synthesis, stabilization, physico-chemical characterization and functionalization of iron oxide nanoparticles. The second part of the book outlines the various biomedical imaging applications that currently take advantage of the magnetic properties of iron oxide nanoparticles. Brief attention is given to potential iron oxide based therapies, while the final chapter covers nanocytotoxicity, which is a key concern wherever exposure to nanomaterials might occur. This comprehensive book is an essential reference for all those academics and professionals who require thorough knowledge of recent and future developments in the role of iron oxide nanoparticles in biomedicine.