The Perfect Predator


Book Description

An electrifying memoir of one woman's extraordinary effort to save her husband's life-and the discovery of a forgotten cure that has the potential to save millions more. "A memoir that reads like a thriller." -New York Times Book Review "A fascinating and terrifying peek into the devastating outcomes of antibiotic misuse-and what happens when standard health care falls short." -Scientific American Epidemiologist Steffanie Strathdee and her husband, psychologist Tom Patterson, were vacationing in Egypt when Tom came down with a stomach bug. What at first seemed like a case of food poisoning quickly turned critical, and by the time Tom had been transferred via emergency medevac to the world-class medical center at UC San Diego, where both he and Steffanie worked, blood work revealed why modern medicine was failing: Tom was fighting one of the most dangerous, antibiotic-resistant bacteria in the world. Frantic, Steffanie combed through research old and new and came across phage therapy: the idea that the right virus, aka "the perfect predator," can kill even the most lethal bacteria. Phage treatment had fallen out of favor almost 100 years ago, after antibiotic use went mainstream. Now, with time running out, Steffanie appealed to phage researchers all over the world for help. She found allies at the FDA, researchers from Texas A&M, and a clandestine Navy biomedical center -- and together they resurrected a forgotten cure. A nail-biting medical mystery, The Perfect Predator is a story of love and survival against all odds, and the (re)discovery of a powerful new weapon in the global superbug crisis.




Bacteriophages and Biofilms


Book Description

Bacteriophages (phages) are the viruses of bacteria and biofilms that represent a frequent niche for bacteria, where they are embedded in extensive extracellular polymeric substances (EPS) and can be structured into complex microcolonies. As a consequence of the resulting spatial structure and heterogeneity, phage-bacterial interactions within biofilms can be more complicated than those between phages and planktonic bacteria. This book presents and discusses research which provides a better understanding of the biology of phages interacting with biofilms.




Phage Therapy: Past, Present and Future


Book Description

Historically, the first observation of a transmissible lytic agent that is specifically active against a bacterium (Bacillus anthracis) was by a Russian microbiologist Nikolay Gamaleya in 1898. At that time, however, it was too early to make a connection to another discovery made by Dmitri Ivanovsky in 1892 and Martinus Beijerinck in 1898 on a non-bacterial pathogen infecting tobacco plants. Thus the viral world was discovered in two of the three domains of life, and our current understanding is that viruses represent the most abundant biological entities on the planet. The potential of bacteriophages for infection treatment have been recognized after the discoveries by Frederick Twort and Felix d’Hérelle in 1915 and 1917. Subsequent phage therapy developments, however, have been overshadowed by the remarkable success of antibiotics in infection control and treatment, and phage therapy research and development persisted mostly in the former Soviet Union countries, Russia and Georgia, as well as in France and Poland. The dramatic rise of antibiotic resistance and especially of multi-drug resistance among human and animal bacterial pathogens, however, challenged the position of antibiotics as a single most important pillar for infection control and treatment. Thus there is a renewed interest in phage therapy as a possible additive/alternative therapy, especially for the infections that resist routine antibiotic treatment. The basis for the revival of phage therapy is affected by a number of issues that need to be resolved before it can enter the arena, which is traditionally reserved for antibiotics. Probably the most important is the regulatory issue: How should phage therapy be regulated? Similarly to drugs? Then the co-evolving nature of phage-bacterial host relationship will be a major hurdle for the production of consistent phage formulae. Or should we resort to the phage products such as lysins and the corresponding engineered versions in order to have accurate and consistent delivery doses? We still have very limited knowledge about the pharmacodynamics of phage therapy. More data, obtained in animal models, are necessary to evaluate the phage therapy efficiency compared, for example, to antibiotics. Another aspect is the safety of phage therapy. How do phages interact with the immune system and to what costs, or benefits? What are the risks, in the course of phage therapy, of transduction of undesirable properties such as virulence or antibiotic resistance genes? How frequent is the development of bacterial host resistance during phage therapy? Understanding these and many other aspects of phage therapy, basic and applied, is the main subject of this Topic.




Bacteriophages


Book Description

This first major reference work dedicated to the mannifold industrial and medical applications of bacteriophages provides both theoretical and practical insights into the emerging field of bacteriophage biotechnology. The book introduces to bacteriophage biology, ecology and history and reviews the latest technologies and tools in bacteriophage detection, strain optimization and nanotechnology. Usage of bacteriophages in food safety, agriculture, and different therapeutic areas is discussed in detail. This book serves as essential guide for researchers in applied microbiology, biotechnology and medicine coming from both academia and industry.




Phage Therapy: A Practical Approach


Book Description

This book gives a detailed yet clear insight into the current state of the art of the therapeutic application of bacteriophages in different conditions. The authors bring in their practical expertise within their respective fields of expertise and provide an excellent overview of the potential and actual use of phage therapy. Topics like economic feasibility compared to traditional antibiotics and also regulatory issues are discussed in far detail. This new volume is therefore a valuable resource for individuals engaged in the medical application of novel phage therapies.




Life in Our Phage World


Book Description

We share the Earth with more than 10,000,000,000,000,000,000,000,000,000,000 phages. Everywhere they thrive, from well-fed guts to near-boiling acidic springs, from cryoconite holes to endolithic fissures. They travel from one microbial host to the next as virions, their genetic weapons packaged inside a protective protein shell. If you could lay all of these nanoscopic phage virions side-by-side, the line-up would stretch over 42 million light years. Through their daily shenanigans they kill or collaborate with their microbial hosts to spur microbial evolution and maintain ecosystem functioning. We have learned much about them since their discovery by Frederick Twort a century ago. They also taught us that DNA, not protein, is the hereditary material, unraveled the triplet genetic code, and offered their enzymes as indispensible tools for the molecular biology revolution. More contributions will be forthcoming since the vast majority of phages await discovery. Phage genomes harbor the world's largest cache of unexplored genetic diversity, and we now have the equipment needed to go prospecting. Although there are field guides to birds, insects, wild flowers, even Bacteria, there was no such handbook to guide the phage explorer. Forest Rohwer decided to correct this oversight, for novice and expert alike, and thus was born Life in Our Phage World. A diverse collection of 30 phages are featured. Each phage is characterized by its distinctive traits, including details about its genome, habitat, lifestyle, global range, and close relatives. The beauty of its intricate virion is captured in a pen-and-ink portrait by artist Benjamin Darby. Each phage also stars in a carefully researched action story relating how that phage encounters, exploits, kills, or otherwise manipulates its host. These behaviors are imaginatively illustrated by fine artist Leah L. Pantea. Eight researchers that work closely with phages also relate their experiences as inhabitants of the phage world. Rohwer has years of first-hand experience with the phage multitudes in ecosystems ranging from coral reefs to the human lung to arctic waters. He pioneered the key metagenomic methods now widely used to catalog and characterize Earth's microbial and viral life. Despite research advances, most people, many scientists included, remain unaware of the ongoing drama in our phage world. In anticipation of 2015, the centennial of phage discovery, Forest assembled a cadre of writers, artists, scientists, and a cartographer and set them to work. The result? This alluring field guide-a feast for the imagination and a celebration of phage diversity."




Inflammation


Book Description

This book represents an excellent, updated review on selected topics, ideas, hypotheses, and therapeutic strategies in the aetiology and pathogenesis of inflammatory phenomena. The introductory article reveals the nature of the immune status of critically ill patients and proposes the usefulness of immuno-stimulating therapy. The next series of articles deals with the role of cytokines in mediating cell functions in immunity and inflammation. The complexity of the prostaglandin function, the pathogenesis of allergic diseases and their control, as well as the inflammatory response to Mycobacteria, are critically evaluated. In addition, therapeutic strategies in infection and inflammation, including application of cytokines and anti-apoptotic factors, are proposed. These also include phage therapy, whose renaissance is associated with the recent worsening problem of resistance to antibiotics. The book is addressed to scientists involved in biomedical research, hospital doctors, and medical students interested in the immunology of inflammation.




Bone and Joint Infections


Book Description

Infections of the bones (osteomyelitis) and joints (septic arthritis) are serious health problems which require antibiotics and often surgery. Awareness among health professionals of the causes and treatment options for various types of bone and joint infections is essential for effective resolution. Bone and Joint Infections takes a multidisciplinary approach in covering the diagnostic and therapeutic treatment of osteomyelitis and septic arthritis, including different types of implant-associated infections. Correct and rapid diagnosis of bone and joint infection is crucial, and requires the input of a variety of specialists. Bone and Joint Infection takes a similarly collaborative and comprehensive approach, including chapters authored by clinicians, laboratory specialists, and surgeons. Covering the basic microbiology and clinical aspects of bone and joint infection, this book will be a valuable resource both for researchers in the lab and for physicians and surgeons seeking a comprehensive reference on osteomyelitis and septic arthritis.




Biofilms in the Food Environment


Book Description

Biofilms in the Food Environment examines biofilms produced by food-borne microorganisms, the risks associated with biofilms in the food chain, the beneficial applications of biofilms in the food environment, and approaches for biofilm removal to improve sanitation and safety in the food environment. Specifically, this book provides: an introduction into the emerging and exciting field of biofilm research in the food environment a summary of advanced knowledge in medical microbiology and engineering and its applicability to food biofilm research, and potential directions for biofilm intervention and industrial beneficial applications that may have direct impact on food safety and public health. Biofilms in the Food Environment is intended to serve as a comprehensive reference source for the food science community, including industry scientists, university researchers, and regulatory agencies. Not only are general concepts regarding biofilms in the food environment covered, but also included are in-depth reviews on biofilm structures, the correlation between strain virulence and biofilm-forming abilities, cutting-edge technologies to investigate microbial compositions in ecosystems and cell-to-cell interactions, and updated findings on molecular attributes and mechanisms involved in biofilm development that might lead to targeted approaches for biofilm prevention and removal. The topics covered and approaches discussed are truly interdisciplinary in nature.




Rising Plague


Book Description

Spellberg's book is a powerful and compelling journey into the antibiotic resistance problem . . . [written] in a personal, compelling, and easy-to-understand manner. It's a must read.--Michael Osterholm, M.D., author of "Living Terrors."