Banach Spaces of Analytic Functions


Book Description

A classic of pure mathematics, this advanced graduate-level text explores the intersection of functional analysis and analytic function theory. Close in spirit to abstract harmonic analysis, it is confined to Banach spaces of analytic functions in the unit disc. The author devotes the first four chapters to proofs of classical theorems on boundary values and boundary integral representations of analytic functions in the unit disc, including generalizations to Dirichlet algebras. The fifth chapter contains the factorization theory of Hp functions, a discussion of some partial extensions of the factorization, and a brief description of the classical approach to the theorems of the first five chapters. The remainder of the book addresses the structure of various Banach spaces and Banach algebras of analytic functions in the unit disc. Enhanced with 100 challenging exercises, a bibliography, and an index, this text belongs in the libraries of students, professional mathematicians, as well as anyone interested in a rigorous, high-level treatment of this topic.




Spaces of Analytic Functions


Book Description




Banach Spaces Of Analytic Functions


Book Description

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.




Banach Spaces of Analytic Functions


Book Description

This volume is focused on Banach spaces of functions analytic in the open unit disc, such as the classical Hardy and Bergman spaces, and weighted versions of these spaces. Other spaces under consideration here include the Bloch space, the families of Cauchy transforms and fractional Cauchy transforms, BMO, VMO, and the Fock space. Some of the work deals with questions about functions in several complex variables.




Banach Spaces of Analytic Functions.


Book Description

With contributions by numerous experts




Banach Spaces of Analytic Functions and Absolutely Summing Operators


Book Description

This book surveys results concerning bases and various approximation properties in the classical spaces of analytical functions. It contains extensive bibliographical comments.




Banach Spaces for Analysts


Book Description

This book is intended to be used with graduate courses in Banach space theory.




Isometries on Banach Spaces


Book Description

Fundamental to the study of any mathematical structure is an understanding of its symmetries. In the class of Banach spaces, this leads naturally to a study of isometries-the linear transformations that preserve distances. In his foundational treatise, Banach showed that every linear isometry on the space of continuous functions on a compact metric




Handbook of the Geometry of Banach Spaces


Book Description

The Handbook presents an overview of most aspects of modernBanach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banachspace theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.




Composition Operators on Spaces of Analytic Functions


Book Description

The study of composition operators lies at the interface of analytic function theory and operator theory. Composition Operators on Spaces of Analytic Functions synthesizes the achievements of the past 25 years and brings into focus the broad outlines of the developing theory. It provides a comprehensive introduction to the linear operators of composition with a fixed function acting on a space of analytic functions. This new book both highlights the unifying ideas behind the major theorems and contrasts the differences between results for related spaces. Nine chapters introduce the main analytic techniques needed, Carleson measure and other integral estimates, linear fractional models, and kernel function techniques, and demonstrate their application to problems of boundedness, compactness, spectra, normality, and so on, of composition operators. Intended as a graduate-level textbook, the prerequisites are minimal. Numerous exercises illustrate and extend the theory. For students and non-students alike, the exercises are an integral part of the book. By including the theory for both one and several variables, historical notes, and a comprehensive bibliography, the book leaves the reader well grounded for future research on composition operators and related areas in operator or function theory.