Band-Ferromagnetism


Book Description

The fascinating phenomenon ferromagnetism is far from being fully understood, although it surely belongs to the oldest problems of solid state physics. For any investigation it appears recommendable to distinguish between materials whose spontaneous magnetization stems from localized electrons of a partially ?lled atomic shell and those in which it is due to itinerant electrons of a partially ?lled conduction band. In the latter case one speaks of band-ferromagnetism, prototypes of which are the classical ferromagnets Fe, Co, and Ni. The present book is a status report on the remarkable progress that has recently been made towards a microscopic understanding of band-ferromagnetism as an electron c- relation e?ect. The authors of the various chapters of this book “Band-Ferromagnetism: Ground-State and Finite-Temperature Phenomena” participated as selected - perts in the 242nd WE-Heraeus-Seminar (4-6 October 2000) held under almost the same title in Wandlitz near Berlin (Germany). It was the second seminar of this type in Wandlitz. (The ?rst in 1998 dealt with the complementary topic of the physics of local-moment ferromagnets such as Gd). Twenty-six invited spe- ers from ten di?erent countries together with ?fty-?ve further participants, who presented contributions in form of posters, spent three days together discussing in an enthusiastic and fertile manner the hot topics of band-ferromagnetism.




Band-Ferromagnetism


Book Description

The fascinating phenomenon ferromagnetism is far from being fully understood, although it surely belongs to the oldest problems of solid state physics. For any investigation it appears recommendable to distinguish between materials whose spontaneous magnetization stems from localized electrons of a partially ?lled atomic shell and those in which it is due to itinerant electrons of a partially ?lled conduction band. In the latter case one speaks of band-ferromagnetism, prototypes of which are the classical ferromagnets Fe, Co, and Ni. The present book is a status report on the remarkable progress that has recently been made towards a microscopic understanding of band-ferromagnetism as an electron c- relation e?ect. The authors of the various chapters of this book “Band-Ferromagnetism: Ground-State and Finite-Temperature Phenomena” participated as selected - perts in the 242nd WE-Heraeus-Seminar (4-6 October 2000) held under almost the same title in Wandlitz near Berlin (Germany). It was the second seminar of this type in Wandlitz. (The ?rst in 1998 dealt with the complementary topic of the physics of local-moment ferromagnets such as Gd). Twenty-six invited spe- ers from ten di?erent countries together with ?fty-?ve further participants, who presented contributions in form of posters, spent three days together discussing in an enthusiastic and fertile manner the hot topics of band-ferromagnetism.




Carbon Based Magnetism


Book Description

Carbon Based Magnetism is the most complete, detailed, and accurate guide on the magnetism of carbon, the main element of living creatures. Written by the leading experts in the field, the book provides a comprehensive review of relevant experimental data and theoretical concepts related to the magnetism of metal-free carbon systems. These systems include carbon based compounds, namely organic radical magnetic systems, and magnetic materials based on carbon structures. The aim is to advance the understanding of the fundamental properties of carbon. This volume discusses all major modern hypotheses on the physical nature of magnetic ordering in carbon systems. The first chapters deal with magnetic ordering mechanisms in p-electron systems as well as molecular magnets with spins residing only in p-orbitals. The following chapters explore the magnetic properties of pure carbon, with particular emphasis on nanosized carbon systems with closed boundary (fullerenes and nanotubes) and with open boundary (structures with edge-localized magnetic states). The remaining chapters focus on newer topics: experimental observation and theoretical models for magnetic ordering above room temperature in pure carbon. The book also includes twenty three review articles that summarize the most significant recent and ongoing exciting scientific developments and provide the explanation. It also highlights some problems that have yet to be solved and points out new avenues for research. This book will appeal to physicists, chemists and biologists. - The most complete, detailed, and accurate Guide in the magnetism of carbon - Dynamically written by the leading experts - Deals with recent scientific highlights - Gathers together chemists and physicists, theoreticians and experimentalists - Unified treatment rather than a series of individually authored papers - Description of genuine organic molecular ferromagnets - Unique description of new carbon materials with Curie temperatures well above ambient.




Progress in Ferromagnetism Research


Book Description

Ferromagnetism is a form of magnetism that can be acquired in an external magnetic field and usually retained in its absence, so that ferromagnetic materials are used to make permanent magnets. A ferromagnetic material may therefore be said to have a high magnetic permeability and susceptibility (which depends upon temperature). Examples are iron, cobalt, nickel, and their alloys. Ultimately, ferromagnetism is caused by spinning electrons in the atoms of the material, which act as tiny weak magnets. They align parallel to each other within small regions of the material to form domains, or areas of stronger magnetism. In an unmagnetised material, the domains are aligned at random so there is no overall magnetic effect. If a magnetic field is applied to that material, the domains align to point in the same direction, producing a strong overall magnetic effect. Permanent magnetism arises if the domains remain aligned after the external field is removed. Ferromagnetic materials exhibit hysteresis. In 2004, it was discovered that a certain allotrope of carbon, nanofoam , exhibited ferromagnetism. The effect dissipates after a few hours at room temperature, but lasts longer at cold temperatures. The material is also a semiconductor. It is thought that other similarly formed materials, of boron and nitrogen, may also be ferromagnetic. This new book rings together leading research from throughout the world.




Physics and Mathematics of Quantum Many-Body Systems


Book Description

This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book’s main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.




New Developments in Ferromagnetism Research


Book Description

Ferromagnetism is a form of magnetism that can be acquired in an external magnetic field and usually retained in its absence, so that ferromagnetic materials are used to make permanent magnets. A ferromagnetic material may therefore be said to have a high magnetic permeability and susceptibility (which depends upon temperature). Examples are iron, cobalt, nickel, and their alloys. Ultimately, ferromagnetism is caused by spinning electrons in the atoms of the material, which act as tiny weak magnets. They align parallel to each other within small regions of the material to form domains, or areas of stronger magnetism. In an unmagnetised material, the domains are aligned at random so there is no overall magnetic effect. If a magnetic field is applied to that material, the domains align to point in the same direction, producing a strong overall magnetic effect. Permanent magnetism arises if the domains remain aligned after the external field is removed. Ferromagnetic materials exhibit hysteresis. In 2004, it was discovered that a certain allotrope of carbon, nanofoam, exhibited ferromagnetism. The effect dissipates after a few hours at room temperature, but lasts longer at cold temperatures. The material is also a semiconductor. It is thought that other similarly formed materials, of boron and nitrogen, may also be ferromagnetic. This new book rings together leading research from throughout the world.







The Mott Metal-Insulator Transition


Book Description

Little do we reliably know about the Mott transition, and we are far from a complete understanding of the metal --insulator transition due to electr- electron interactions. Mott summarized his basic ideas on the subject in his wonderful book Metal--Insulator nansitions that first appeared in 1974 11. 1). In his view, a Motk insulator displays a gap for charge-carrying excitations due to electron cowelations, whose importance is expressed by the presence of local magnetic moments regardless of whether or not they are ordered. Since the subject is far from being settled, different opinions on specific aspects of the Mott transition still persist. This book naturally embodies my own understanding of the phenomenon, inspired by the work of the late Sir Kevill Mott. The purpose of this book is twofold: first, to give a detailed presen- tion of the basic theoretical concopts for Mott insulators and, second, to test these ideas against the results from model calculations. For this purpose the Hubbard model and some of its derivatives are best suited. The Hubbard model describes a Mott transition with a mere minimum of tunable par- eters, and various exact statements and even exact solutions exist in certain limiting cases. Exact solutions not only allow us to test our basic ideas, but also help to assess the quality of approxin~ate theories for correlated electron systems.




Quantum Theory of Magnetism


Book Description

Magnetism is one of the oldest and most fundamental problems of Solid State Physics although not being fully understood up to now. On the other hand it is one of the hottest topics of current research. Practically all branches of modern technological developments are based on ferromagnetism, especially what concerns information technology. The book, written in a tutorial style, starts from the fundamental features of atomic magnetism, discusses the essentially single-particle problems of dia- and paramagnetism, in order to provide the basis for the exclusively interesting collective magnetism (ferro, ferri, antiferro). Several types of exchange interactions, which take care under certain preconditions for a collective ordering of localized or itinerant permanent magnetic moments, are worked out. Under which conditions these exchange interactions are able to provoke a collective moment ordering for finite temperatures is investigated within a series of theoretical models, each of them considered for a very special class of magnetic materials. The book is written in a tutorial style appropriate for those who want to learn magnetism and eventually to do research work in this field. Numerous exercises with full solutions for testing own attempts will help to a deep understanding of the main aspects of collective ferromagnetism.




Magnetism: A Synchrotron Radiation Approach


Book Description

This volume contains the edited lectures of the fourth Mittelwihr school on "Magnetism and Synchrotron Radiation". This series of events introduces graduate students and nonspecialists from related disciplines to the field of magnetism and magnetic materials with emphasis on synchrotron radiation as an experimental tool of investigation. These lecture notes present in particular the state of the art regarding the analysis of magnetic properties of new materials.