Band-Notch Characteristics in Ultra-Wideband Antennas


Book Description

Provides a comprehensive presentation of avoiding interference in Ultra-Wideband (UWB) systems. Reviews state of the art in UWB antennas, filtennas and various tunable technologies. Explains different techniques for producing band-notch characteristics in UWB systems. Includes discussion on historical perspectives of UWB Technology. Consolidates different research activities carried out on the electromagnetic interference cancellation techniques in the UWB communication systems.




Band-Notch Characteristics in Ultra-Wideband Antennas


Book Description

This book comprehensively reviews ultra-wideband (UWB) and UWB multi-input multi-output (MIMO) antennas with band-notched characteristics, with a focus on interference cancellation functionality. The book is organized into seven chapters that cover single band, dual band, and multi band-notched UWB antennas, followed by band-notched characteristics in UWB (MIMO) antennas. Further, it explains the mechanism of reconfigurability and tunability in band-notched UWB antennas, including advanced applications of UWB systems. Overall, it covers different techniques of canceling the electromagnetic interference in UWB in a concise volume. Features Provides a comprehensive presentation of avoiding interference in UWB systems Reviews state of the art literature related to UWB antennas, filtennas, and various reconfigurable technologies Explains different techniques for producing band-notch characteristics in UWB systems Includes discussion on historical perspectives of UWB technology Consolidates different research activities carried out on the electromagnetic interference cancellation techniques in the UWB communication systems Band-Notch Characteristics in Ultra-Wideband Antennas is aimed at researchers and graduate students in electrical and antenna engineering. Taimoor Khan has been an Assistant Professor at the Department of Electronics and Communication Engineering, National Institute of Technology Silchar since 2014. In addition to this, Dr. Khan has also worked as a Visiting Assistant Professor at Asian Institute of Technology Bangkok, Thailand during September–December, 2016. His active research interests include Printed Microwave Circuits, Electromagnetic Bandgap Structures, Ultra-wideband Antennas, Dielectric Resonator Antennas, Ambient Microwave Energy Harvesting, and Artificial Intelligence Paradigms in Electromagnetics. Dr. Khan has successfully guided three Ph.D. theses, and is supervising six Ph.D. students. He has published over 75 research articles in well-indexed journals and in world-renowned conference proceedings. Currently, he is executing three funded research projects, including two international collaborative SPARC and VAJRA research projects. In September 2020, Dr. Khan has been awarded a prestigious national IETE-Prof SVC Aiya Memorial Award for the year 2020. Yahia M. M. Antar has been a Professor at the Department of Electrical and Computer Engineering, Royal Military College of Canada since 1990. He served as the Chair of CNC, URSI from 1999 to 2008, Commission B from 1993 to 1999, and has a cross appointment at Queen’s University in Kingston. He has authored and co-authored over 250 journal papers, several books and chapters in books, over 500 refereed conference papers, holds several patents, has chaired several national and international conferences, and has given plenary talks at many conferences. Dr. Antar is a fellow of the Engineering Institute of Canada, the Electromagnetic Academy, and an International Union of Radio Science (URSI). He was elected by the URSI to the Board as the Vice President in 2008 and in 2014, and to the IEEE AP AdCom in 2009. In 2011, he was appointed as a member of the Canadian Defence Advisory Board (DAB) of the Canadian Department of National Defence. He serves as an Associate Editor for many IEEE and IET Journals, and as an IEEE-APS Distinguished Lecturer. Presently, he is working as President-Elect for IEEE Antenna and Propagation Society for the year 2020.




Ultra Wideband


Book Description

Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations.




Optical and Wireless Technologies


Book Description

This volume presents selected papers from the 2nd International Conference on Optical and Wireless Technologies, conducted from 10th to 11th February, 2018. It focuses on extending the limits of currently used systems encompassing optical and wireless domains, and explores novel research on wireless and optical techniques and systems, describing practical implementation activities, results and issues. The book will serve as a valuable reference resource for academics and researchers across the globe.




Broadband Planar Antennas


Book Description

The increasing demand for wireless communications has revolutionised the lifestyle of today’s society and one of the key components of wireless technology is antenna design. Broadband planar antennas are the newest generation of antennas boasting the attractive features required, such as broad operating bandwidth, low profile, light weight, low cost and ease of integration into arrays or Radio Frequency (RF) circuits, to make them ideal components of modern communications systems. Research into small and broadband antennas has been spurred by the rapid development of portable wireless communication devices such as cell phones, laptops and personal digital assistants. This all-encompassing volume, Broadband Planar Antennas: Design and Applications, systematically describes the techniques for all planar antennas from microstrip patch antennas, suspended plate antennas and planar inverted-L/F antennas to planar dipole antennas. Also discussed are some of the most recent outcomes such as broadband antenna issues in promising ultra-wideband applications. Clearly describes the fundamentals of planar antennas and categorises them according to their radiation characteristics Introduces the advanced progress in broadband planar antennas for modern wireless communications Includes a wealth of case studies, design guidelines, figures and tables This text is essential reading for antenna, RF and microwave engineers and manufacturers within the telecommunications industry. Its highly accessible approach will also appeal to researchers, postgraduate students and academic lecturers.




2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT)


Book Description

The 4th International Conference on Smart Systems and Inventive Technology (ICSSIT 2022) is being organized by Francis Xavier Engineering College, Tirunelveli, India during 20 22, January 2022 ICSSIT 2022 will provide an outstanding international forum for sharing knowledge and results in all fields of science, engineering and Technology ICSSIT provides quality key experts who provide an opportunity in bringing up innovative ideas Recent updates in the field of technology will be a platform for the upcoming researchers The conference will be Complete, Concise, Clear and Cohesive in terms of research related to Smart Systems and Technology




Ultrawideband Antennas


Book Description

Ultrawideband (UWB) technology, positioned as the cutting edge of research and development, paves the way to meet the emerging demands set by broadband wireless applications, such as high-speed data transmission, medical imaging, short-range radars, electromagnetic testing, etc. This breathtaking resource builds upon the basics of UWB technology to provide a complete compilation of figures of merit along with a vital state-of-the-art of the different antenna alternatives that are to be employed according to the specific application. Without excessive recourse to mathematics, this volume emphasizes on the UWB antenna design and equips readers with practical prediction techniques based on simple formulas and models. The big picture of UWB antenna technology would not be complete without addressing its applications, and this will serve to provide consultants with key clues for slot market searching. Containing over 150 supporting illustrations and figures, this comprehensive overview of UWB technology, antenna design and applications is a vital source of information and reference for R&D organizations, researchers, practitioners, consultants, RF professionals and communication engineers.




The WLAN Band-Notching of Ultra WideBand Antennas


Book Description

Technical Report from the year 2013 in the subject Engineering - Communication Technology, grade: A, , course: Electrical Engineering, language: English, abstract: In this report three staircase UWB antennae with WLAN band notch characteristic, each having different ground planes, are presented. These include a Co-Planar Waveguide-fed antenna, a Transmission Line-fed antenna with partial ground plane having a Defected Ground Structure (DGS) and a Transmission Line-fed antenna with slotted ground plane. All the band-notched antennae have rejection characteristics at 5 GHz WLAN band (5.15GHz to 5.35GHz and 5.725GHz to 5.825 GHz) while the antenna with slotted ground plane rejects the 4.9GHZ WLAN band (4.94GHz to 4.99GHz) as well. In all the three antennae the WLAN band is notched by embedding a U-shaped slot in the transmission line. The proposed antennae are carefully designed, simulated and tested in order to fulfill the UWB antennae’s pre-defined criteria. The Simulated and Measured results are found to be in good agreement which show the validity of the suggested designs. Since the commencement of human civilization, humankind attempts to communicate with each other. It is the process of communication, namely the sharing of information, emotions and feelings that has made the mankind the sterling creation of God. It all started with gestures of hands and sounds produced by the vocal cords and gradually evolved into wired and wireless communication now. The orthodox wireless systems were long-range narrowband systems, but in order to use the available spectrum, now, UWB (Ultra-Wideband) short-range systems are being used which consume low power and built using low-priced digital components. The Microstrip Antennae are designed to implement UWB systems, because they show effective results for broadband antennae. Ultra-wideband (UWB) antennae are by far the most essential elements for UWB systems. With the launch of the 3.1GHz to 10.6GHz band, applications for short-range and high-bandwidth portable gadgets are major research areas in UWB systems. Consequently, the acknowledgment of UWB antennas in printed-circuit systems within comparatively small substrate areas is of major significance.




Antenna Fundamentals for Legacy Mobile Applications and Beyond


Book Description

This book highlights technology trends and challenges that trace the evolution of antenna design, starting from 3rd generation phones and moving towards the latest release of LTE-A. The authors explore how the simple monopole and whip antenna from the GSM years have evolved towards what we have today, an antenna design that is compact, multi-band in nature and caters to multiple elements on the same patch to provide high throughput connectivity. The scope of the book targets a broad range of subjects, including the microstrip antenna, PIFA antenna, and the monopole antenna to be used for different applications over three different mobile generations. Beyond that, the authors take a step into the future and look at antenna requirements for 5G communications, which already has the 5G drive in place with prominent scenarios and use-cases emerging. They examine these, and put in place the challenges that lie ahead for antenna design, particularly in mm-Wave design. The book provides a reference for practicing engineers and under/post graduate students working in this field.




Compact Antennas for High Data Rate Communication


Book Description

This book discusses the development of promising technologies for compact antennas for high data-rate communications. It discusses and analyzes the design of compact ultra-wideband (UWB) and multiple input, multiple output (MIMO) antennas, providing essential know-how for designers, practicing engineers and scientists. These wireless communication technologies enable consumers to have convenient access to a wide range of services – anytime, anywhere. And the introduction of wireless mobile access points eliminates the limitations to communication imposed by geographical location. The Internet has allowed people to access and share information much more rapidly, but in order to achieve higher data rates with the limited available resources and imposed constraints, wireless communication technology needs to be pushed beyond the physical limits of the propagation channel. This book contributes to achieving this goal.