Bandwidth Efficient Coding


Book Description

This book addresses coding, a new solution to the major challenge of communicating more bits of information in the same radio spectrum. Explores concepts and new transmission methods that have arisen in the last 15 years Discusses the method of faster than Nyquist signaling Provides self-education resources by including design parameters and short MATLAB routines Bandwidth Efficient Coding takes a fresh look at classical information theory and introduces a different point of view for research and development engineers and graduate students in communication engineering and wireless communication.




Space-Time Coding


Book Description

The capacity of wireless data communications is lagging behind demands due to unsatisfactory performance of the existing wireless networks, such as low data rates, low spectral efficiency and low quality of service. Space-time coding is an effective transmit diversity technique to combat fading in wireless communications. Space-time codes are a highly bandwidth-efficient approach to signalling within wireless communication that takes advantage of the spatial dimension by transmitting a number of data streams using multiple co-located antennas. There are various approaches to the coding structures, including space-time trellis coded modulation, space-time turbo codes and also layered architectures. The central issue in all these various coding structures is the exploitation of multipath effects in order to achieve very high spectral efficiencies. The spectral efficiencies of traditional wireless systems range between 1-5bps/sec/Hz but by using space-time techniques spectral efficiencies of 20-40bps/sec/Hz have been possible. Hence, space-time coding enables an increase in capacity by an order of magnitude. This is the main reason why space-time codes have been included in the standards for the third generation wireless communication systems and ultimately why Space-time Coding will be in great demand by individuals within industry and academia. The comprehensive understanding of space-time coding is essential in the implementation of 3G, and as the only title currently available, Space-Time Coding will be the standard text for Researchers, telecommunication engineers and network planners, academics and undergraduate/postgraduate students, telecommunications managers and consultants.




Channel Coding Techniques for Wireless Communications


Book Description

This book discusses the latest channel coding techniques, MIMO systems, and 5G channel coding evolution. It provides a comprehensive overview of channel coding, covering modern techniques such as turbo codes, low-density parity-check (LDPC) codes, space–time coding, polar codes, LT codes, and Raptor codes as well as the traditional codes such as cyclic codes, BCH, RS codes, and convolutional codes. It also explores MIMO communications, which is an effective method for high-speed or high-reliability wireless communications. It also examines the evolution of 5G channel coding techniques. Each of the 13 chapters features numerous illustrative examples for easy understanding of the coding techniques, and MATLAB-based programs are integrated in the text to enhance readers’ grasp of the underlying theories. Further, PC-based MATLAB m-files for illustrative examples are included for students and researchers involved in advanced and current concepts of coding theory.




Bandwidth-Efficient Digital Modulation with Application to Deep Space Communications


Book Description

An important look at bandwidth-efficient modulations with applications to today's Space program Based on research and results obtained at the California Institute of Technology's Jet Propulsion Laboratory, this timely book defines, describes, and then delineates the performance (power and bandwidth) of digital communication systems that incorporate a wide variety of bandwidth-efficient modulations appropriate for the design and implementation of space communications systems. The author compares the performance of these systems in the presence of a number of practical (non-ideal) transmitter and receiver characteristics such as modulator and phase imbalance, imperfect carrier synchronization, and transmitter nonlinearity. Although the material focuses on the deep space applications developed at the Jet Propulsion Laboratory, the presentation is sufficiently broad as to be applicable to a host of other applications dealing with RF communications. An important contribution to the scientific literature, Bandwidth-Efficient Digital Modulation with Application to Deep Space Communications * was commissioned by the JPL Deep Space Communications and Navigation System Center of Excellence * highlights many NASA-funded technical contributions pertaining to deep space communications systems * is a part of the prestigious Deep Space Communications and Navigation Series The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by disseminating state-of-the-art knowledge in key technologies.




Coded-Modulation Techniques for Fading Channels


Book Description

Coded-Modulation Techniques for Fading Channels provides the reader with a sound background for the application of bandwidth-efficient coded-modulation techniques in fading channels. The book systematically presents recent developments in the field, which has grown rapidly in recent years, and provides a solid frame of reference for further research in this area. During the past decade there has been a proliferation of research in the area of bandwidth-efficient coded-modulation techniques. The primary advantage of these schemes over modulation schemes employing traditional error correcting codes is their ability to improve the performance of the communication system without bandwidth expansion. This property makes them a suitable choice for channels which are limited in both power and bandwidth. A typical example of such channels is a mobile satellite channel, where it is desired to accommodate a large number of users in a given bandwidth with a power which is constrained by the physical size of the satellite and by the vehicle's antenna. Coded-Modulation Techniques for Fading Channels is an excellent reference for researchers and practicing engineers, and may be used as a text for advanced courses on the subject.







The International Handbook of Space Technology


Book Description

This comprehensive handbook provides an overview of space technology and a holistic understanding of the system-of-systems that is a modern spacecraft. With a foreword by Elon Musk, CEO and CTO of SpaceX, and contributions from globally leading agency experts from NASA, ESA, JAXA, and CNES, as well as European and North American academics and industrialists, this handbook, as well as giving an interdisciplinary overview, offers, through individual self-contained chapters, more detailed understanding of specific fields, ranging through: · Launch systems, structures, power, thermal, communications, propulsion, and software, to · entry, descent and landing, ground segment, robotics, and data systems, to · technology management, legal and regulatory issues, and project management. This handbook is an equally invaluable asset to those on a career path towards the space industry as it is to those already within the industry.







Bandwidth Efficient Coding


Book Description

This book addresses coding, a new solution to the major challenge of communicating more bits of information in the same radio spectrum. Explores concepts and new transmission methods that have arisen in the last 15 years Discusses the method of faster than Nyquist signaling Provides self-education resources by including design parameters and short MATLAB routines Bandwidth Efficient Coding takes a fresh look at classical information theory and introduces a different point of view for research and development engineers and graduate students in communication engineering and wireless communication.




Digital Satellite Communications Systems and Technologies


Book Description

Among the space activities of the last three decades satellite communications (SATCOM) has found the widest application in meeting both civil and military communications requirements. Several international, regional and national SATCOM systems of increasing capacity, capability and complexity have been and are being implemented over the years. The latest versions are utilizing such concepts as spot beams, processing transponders in SS-TDMA and operations in different frequency bands including the EHF band. On the military side, the United States of America, the United Kingdom, France and NATO (the North Atlantic Treaty Organisation) have been the only owners and operators of military SATCOM systems in the West. The systems in being and under development use satellites and ground terminals with characteristics which differ from the civilian ones with respect to frequency bands utilised and survivability and interoperability. The SATCOM has given the military users the potential of having much-needed mobility, flexibility and survivability in strategic and tactical communications for land, sea and air operations. It must, however, be said particularly for the military SATCOM systems that they have been evolved in big jumps, both in time and capability, each jump involving the deployment of two or three often specially designed large satellites, large expenses and rather traumatic transition between jumps. Despite these undesirable features these systems did not have the required degree of suevivability and flexibility.