Bandwidth-efficient Forward-error-correction-coding for Long Burst Noise Channels


Book Description

The IDA can be implemented using Reed Solomon (RS) codes. Faster and more efficient codes can be used to implement IDA, but they are not currently implemented in hardware. The IDA can be used to design bandwidth-efficient FECC for a channel with burst noise. Our research presents the analysis, design, implementation, and testing of IDA. The IDA has been implemented in software using the RS codes. We compared its performance with that of TPC. Assuming a well-defined channel with long burst noise (i.e., many bit errors) and a large block size, we showed that if symbol-by-symbol reliability is not available (i.e., unable to detect burst noise boundaries), then IDA will perform better than TPC in terms of bit and block error rates. However, if symbol-by-symbol reliability is available, then IDA may perform as well as TPC in terms of block error rate, while TPC will always have a lower bit error rate.










Guessing Random Additive Noise Decoding


Book Description

This book gives a detailed overview of a universal Maximum Likelihood (ML) decoding technique, known as Guessing Random Additive Noise Decoding (GRAND), has been introduced for short-length and high-rate linear block codes. The interest in short channel codes and the corresponding ML decoding algorithms has recently been reignited in both industry and academia due to emergence of applications with strict reliability and ultra-low latency requirements . A few of these applications include Machine-to-Machine (M2M) communication, augmented and virtual Reality, Intelligent Transportation Systems (ITS), the Internet of Things (IoTs), and Ultra-Reliable and Low Latency Communications (URLLC), which is an important use case for the 5G-NR standard. GRAND features both soft-input and hard-input variants. Moreover, there are traditional GRAND variants that can be used with any communication channel, and specialized GRAND variants that are developed for a specific communication channel. This book presents a detailed overview of these GRAND variants and their hardware architectures. The book is structured into four parts. Part 1 introduces linear block codes and the GRAND algorithm. Part 2 discusses the hardware architecture for traditional GRAND variants that can be applied to any underlying communication channel. Part 3 describes the hardware architectures for specialized GRAND variants developed for specific communication channels. Lastly, Part 4 provides an overview of recently proposed GRAND variants and their unique applications. This book is ideal for researchers or engineers looking to implement high-throughput and energy-efficient hardware for GRAND, as well as seasoned academics and graduate students interested in the topic of VLSI hardware architectures. Additionally, it can serve as reading material in graduate courses covering modern error correcting codes and Maximum Likelihood decoding for short codes.




Modeling and Tools for Network Simulation


Book Description

A crucial step during the design and engineering of communication systems is the estimation of their performance and behavior; especially for mathematically complex or highly dynamic systems network simulation is particularly useful. This book focuses on tools, modeling principles and state-of-the art models for discrete-event based network simulations, the standard method applied today in academia and industry for performance evaluation of new network designs and architectures. The focus of the tools part is on two distinct simulations engines: OmNet++ and ns-3, while it also deals with issues like parallelization, software integration and hardware simulations. The parts dealing with modeling and models for network simulations are split into a wireless section and a section dealing with higher layers. The wireless section covers all essential modeling principles for dealing with physical layer, link layer and wireless channel behavior. In addition, detailed models for prominent wireless systems like IEEE 802.11 and IEEE 802.16 are presented. In the part on higher layers, classical modeling approaches for the network layer, the transport layer and the application layer are presented in addition to modeling approaches for peer-to-peer networks and topologies of networks. The modeling parts are accompanied with catalogues of model implementations for a large set of different simulation engines. The book is aimed at master students and PhD students of computer science and electrical engineering as well as at researchers and practitioners from academia and industry that are dealing with network simulation at any layer of the protocol stack.




CED.


Book Description







Forward Error Correction Via Channel Coding


Book Description

This book provides a comprehensive explanation of forward error correction, which is a vital part of communication systems. The book is written in such a way to make the subject easy and understandable for the reader. The book starts with a review of linear algebra to provide a basis for the text. The author then goes on to cover linear block codes, syndrome error correction, cyclic codes, Galois fields, BCH codes, Reed Solomon codes, and convolutional codes. Examples are provided throughout the text. Provides a comprehensive treatment of forward error correction Includes examples through the book, which are solved in steps, making them easier to understand Ideal for researchers, professionals and students.




Proceedings


Book Description




Conference Record


Book Description