Barre Exercises and Structure


Book Description

Barre Exercises and Structure is a book in the educational series by the Fonteyn Academy Press. It accompanies the Academy Method International Teacher Certificate training program, but is quite helpful to all instructors and students of dance. Each and every exercise in a classical dance class has a specific purpose. Knowing that purpose will help achieving the highest level of dancing possible for you. The Academy Method is taught at The Margot Fonteyn Academy of Ballet. It is based on the fundamental principles of movement as they apply to classical theatrical dancing. Carrying forward the teachings of Margaret Craske, and her students, this is what Dame Margot Fonteyn herself studied so long as she was dancing. Every single movement in classical dancing is derived from the steps practiced at the barre. This book explains that relationship, and gives dance students precise knowledge of what they are to do, why they do it, how it will help their dancing, and exactly what is required of them.




Statics and Mechanics of Structures


Book Description

The statics and mechanics of structures form a core aspect of civil engineering. This book provides an introduction to the subject, starting from classic hand-calculation types of analysis and gradually advancing to a systematic form suitable for computer implementation. It starts with statically determinate structures in the form of trusses, beams and frames. Instability is discussed in the form of the column problem - both the ideal column and the imperfect column used in actual column design. The theory of statically indeterminate structures is then introduced, and the force and deformation methods are explained and illustrated. An important aspect of the book’s approach is the systematic development of the theory in a form suitable for computer implementation using finite elements. This development is supported by two small computer programs, MiniTruss and MiniFrame, which permit static analysis of trusses and frames, as well as linearized stability analysis. The book’s final section presents related strength of materials subjects in greater detail; these include stress and strain, failure criteria, and normal and shear stresses in general beam flexure and in beam torsion. The book is well-suited as a textbook for a two-semester introductory course on structures.




Mechanical and Structural Vibrations


Book Description

This book provides a new viewpoint for the study of vibrations exhibited by mechanical and structural systems. Tight integration of mathematical software makes it possible to address real world complexity in a manner that is readily accessible to the reader. It offers new approaches for discrete system modeling and for analysis of continuous systems. Substantial attention is given to several topics of practical importance, including FFT's experimental modal analysis, substructuring concepts, and response of heavily damped and gyroscopic systems.




Structural Mechanics: Modelling and Analysis of Frames and Trusses


Book Description

Textbook covers the fundamental theory of structural mechanics and the modelling and analysis of frame and truss structures Deals with modelling and analysis of trusses and frames using a systematic matrix formulated displacement method with the language and flexibility of the finite element method Element matrices are established from analytical solutions to the differential equations Provides a strong toolbox with elements and algorithms for computational modelling and numerical exploration of truss and frame structures Discusses the concept of stiffness as a qualitative tool to explain structural behaviour Includes numerous exercises, for some of which the computer software CALFEM is used. In order to support the learning process CALFEM gives the user full overview of the matrices and algorithms used in a finite element analysis




An Introduction to Structural Optimization


Book Description

This book has grown out of lectures and courses given at Linköping University, Sweden, over a period of 15 years. It gives an introductory treatment of problems and methods of structural optimization. The three basic classes of geometrical - timization problems of mechanical structures, i. e. , size, shape and topology op- mization, are treated. The focus is on concrete numerical solution methods for d- crete and (?nite element) discretized linear elastic structures. The style is explicit and practical: mathematical proofs are provided when arguments can be kept e- mentary but are otherwise only cited, while implementation details are frequently provided. Moreover, since the text has an emphasis on geometrical design problems, where the design is represented by continuously varying—frequently very many— variables, so-called ?rst order methods are central to the treatment. These methods are based on sensitivity analysis, i. e. , on establishing ?rst order derivatives for - jectives and constraints. The classical ?rst order methods that we emphasize are CONLIN and MMA, which are based on explicit, convex and separable appro- mations. It should be remarked that the classical and frequently used so-called op- mality criteria method is also of this kind. It may also be noted in this context that zero order methods such as response surface methods, surrogate models, neural n- works, genetic algorithms, etc. , essentially apply to different types of problems than the ones treated here and should be presented elsewhere.




Theory of Structures


Book Description

Das Werk liefert eine einheitliche Darstellung der Baustatik auf der Grundlage der Technischen Mechanik. Es behandelt Stab- und Flächentragwerke nach der Elastizitäts- und Plastizitätstheorie. Es betont den geschichtlichen Hintergrund und den Bezug zur praktischen Ingenieurtätigkeit und dokumentiert erstmals in umfassender Weise die spezielle Schule, die sich in den letzten 50 Jahren an der ETH in Zürich herausgebildet hat. Als Lehrbuch enthält das Werk viele durchgearbeitete Beispiele und Aufgaben zum vertieften Studium. Die einzelnen Kapitel werden durch Zusammenfassungen abgeschlossen, welche die wichtigsten Lehrinhalte in prägnanter Form hervorheben. Die verwendeten Fachausdrücke sind in einem Anhang definiert. Als Nachschlagewerk enthält das Buch ein umfassendes Stichwortverzeichnis. Die Gliederung des Inhalts und Hervorhebungen im Text erleichtern die Übersicht. Bezeichnungen, Werkstoff- und Querschnittswerte sowie Abrisse der Matrizenalgebra, der Tensorrechnung und der Variationsrechnung sind in Anhängen zusammengefasst. Insgesamt richtet sich das Buch als Grundlagenwerk an Studierende und Lehrende ebenso wie an Bauingenieure in der Praxis. Es bezweckt, seine Leser zu einer sinnvollen Modellierung und Behandlung von Tragwerken zu befähigen und sie bei den unter ihrer Verantwortung vorgenommenen Projektierungs- und Überprüfungsarbeiten von Tragwerken zu unterstützen.




Mechanics Of Solids And Structures (2nd Edition)


Book Description

The fifteen chapters of this book are arranged in a logical progression. The text begins with the more fundamental material on stress and strain transformations with elasticity theory for plane and axially symmetric bodies, followed by a full treatment of the theories of bending and torsion. Coverage of moment distribution, shear flow, struts and energy methods precede a chapter on finite elements. Thereafter, the book presents yield and strength criteria, plasticity, collapse, creep, visco-elasticity, fatigue and fracture mechanics. Appended is material on the properties of areas, matrices and stress concentrations. Each topic is illustrated by worked examples and supported by numerous exercises drawn from the author's teaching experience and professional institution examinations (CEI).This edition includes new material and an extended exercise section for each of the fifteen chapters, as well as three appendices. The broad text ensures its suitability for undergraduate and postgraduate courses in which the mechanics of solids and structures form a part including: mechanical, aeronautical, civil, design and materials engineering.




Dance Teaching Methods and Curriculum Design


Book Description

Dance Teaching Methods and Curriculum Design, Second Edition, presents a comprehensive model that prepares students to teach dance in school and community settings. It offers 14 dance units and many tools to help students learn to design lesson plans and units and create their own dance portfolio




JSP for Practical Program Design


Book Description

The design of this book is based on teaching the ]SP (Jackson Structured Pro gramming) methodology to undergaduates and postgraduates over a period of a number of years. I am grateful for the comments and feedback that have been provided by students who have taken these courses. The aim of the book is to provide readers with an understanding of the concepts behind the ]SP methodology in order that they may apply it for themselves; simply using the notation is not sufficient, it must be used appropriately. The answer to the question "Why is this wrong?" can lead to a greater understanding than a sim ple response to "Is this right?". I have included illegal structures as "under standable mistakes" in the early sections for this reason. It is not necessary for readers of this text to have experience with any par ticular programming language; indeed, one of the virtues of ]SP is that it is lan guage independent. Examples have been given in Pascal, C and COBOL as these are languages which students of ]SP are likely to have met in the course of their studies, or will be meeting while they are learning ]SP. The COBOL lan guage is widely used in industry in a ]SP development environment.




Introduction to Structural Dynamics


Book Description

This textbook, first published in 2006, provides the student of aerospace, civil and mechanical engineering with all the fundamentals of linear structural dynamics analysis. It is designed for an advanced undergraduate or first-year graduate course. This textbook is a departure from the usual presentation in two important respects. First, descriptions of system dynamics are based on the simpler to use Lagrange equations. Second, no organizational distinctions are made between multi-degree of freedom systems and single-degree of freedom systems. The textbook is organized on the basis of first writing structural equation systems of motion, and then solving those equations mostly by means of a modal transformation. The text contains more material than is commonly taught in one semester so advanced topics are designated by an asterisk. The final two chapters can also be deferred for later studies. The text contains numerous examples and end-of-chapter exercises.