Basic Bethe


Book Description




In the Shadow of the Bomb


Book Description

How two charismatic, exceptionally talented physicists came to terms with the nuclear weapons they helped to create In 1945, the United States dropped the bomb, and physicists were forced to contemplate disquieting questions about their roles and responsibilities. When the Cold War followed, they were confronted with political demands for their loyalty and McCarthyism's threats to academic freedom. By examining how J. Robert Oppenheimer and Hans A. Bethe—two men with similar backgrounds but divergent aspirations and characters—struggled with these moral dilemmas, one of our foremost historians of physics tells the story of modern physics, the development of atomic weapons, and the Cold War. Oppenheimer and Bethe led parallel lives. Both received liberal educations that emphasized moral as well as intellectual growth. Both were outstanding theoreticians who worked on the atom bomb at Los Alamos. Both advised the government on nuclear issues, and both resisted the development of the hydrogen bomb. Both were, in their youth, sympathetic to liberal causes, and both were later called to defend the United States against Soviet communism and colleagues against anti-Communist crusaders. Finally, both prized scientific community as a salve to the apparent failure of Enlightenment values. Yet their responses to the use of the atom bomb, the testing of the hydrogen bomb, and the treachery of domestic politics differed markedly. Bethe, who drew confidence from scientific achievement and integration into the physics community, preserved a deep integrity. By accepting a modest role, he continued to influence policy and contributed to the nuclear test ban treaty of 1963. In contrast, Oppenheimer first embodied a new scientific persona—the scientist who creates knowledge and technology affecting all humanity and boldly addresses their impact—and then could not carry its burden. His desire to retain insider status, combined with his isolation from creative work and collegial scientific community, led him to compromise principles and, ironically, to lose prestige and fall victim to other insiders. S. S. Schweber draws on his vast knowledge of science and its history—in addition to his unique access to the personalities involved—to tell a tale of two men that will enthrall readers interested in science, history, and the lives and minds of great thinkers.




Hans Bethe and His Physics


Book Description

When Hans Bethe, at the age of 97, asked his long-term collaborator, Gerry Brown, to explain his scientific work to the world, the latter knew that this was a steep task. As the late John Bahcall famously remarked: ?If you know his (Bethe's) work, you might be inclined to think he is really several people, all of whom are engaged in a conspiracy to sign their work with the same name?. Almost eight decades of original research, hundreds of scientific papers, numerous books, countless reports spanning the key areas of 20th century physics are the impressive record of Hans Bethe's academic work.In answering Bethe's request, the editors enlisted the help of experts in the different research fields, collaborators and friends of this ?last giant? of 20th century physics. Hans Bethe and His Physics is the result. It contains discussions of Hans Bethe's work in solid state physics, nuclear physics and astrophysics; it explains his contributions as a science advisor and his stance on energy and nuclear weapons; and it demonstrates his impact as a teacher and mentor to generations of young scientists. While the book's primary aim is to explain the science behind the man, the different articles also allow the reader to take a glimpse at the man behind the science.




Nuclear Forces


Book Description

On the fiftieth anniversary of Hiroshima, Nobel-winning physicist Hans Bethe called on his fellow scientists to stop working on weapons of mass destruction. What drove Bethe, the head of Theoretical Physics at Los Alamos during the Manhattan Project, to renounce the weaponry he had once worked so tirelessly to create? That is one of the questions answered by Nuclear Forces, a riveting biography of Bethe’s early life and development as both a scientist and a man of principle. As Silvan Schweber follows Bethe from his childhood in Germany, to laboratories in Italy and England, and on to Cornell University, he shows how these differing environments were reflected in the kind of physics Bethe produced. Many of the young quantum physicists in the 1930s, including Bethe, had Jewish roots, and Schweber considers how Liberal Judaism in Germany helps explain their remarkable contributions. A portrait emerges of a man whose strategy for staying on top of a deeply hierarchical field was to tackle only those problems he knew he could solve. Bethe’s emotional maturation was shaped by his father and by two women of Jewish background: his overly possessive mother and his wife, who would later serve as an ethical touchstone during the turbulent years he spent designing nuclear bombs. Situating Bethe in the context of the various communities where he worked, Schweber provides a full picture of prewar developments in physics that changed the modern world, and of a scientist shaped by the unprecedented moral dilemmas those developments in turn created.




Quantum Field Theory I: Basics in Mathematics and Physics


Book Description

This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.




Genius


Book Description

To his colleagues, Richard Feynman was not so much a genius as he was a full-blown magician: someone who “does things that nobody else could do and that seem completely unexpected.” The path he cleared for twentieth-century physics led from the making of the atomic bomb to a Nobel Prize-winning theory of quantam electrodynamics to his devastating exposé of the Challenger space shuttle disaster. At the same time, the ebullient Feynman established a reputation as an eccentric showman, a master safe cracker and bongo player, and a wizard of seduction. Now James Gleick, author of the bestselling Chaos, unravels teh dense skein of Feynman‘s thought as well as the paradoxes of his character in a biography—which was nominated for a National Book Award—of outstanding lucidity and compassion.




Theoretical Nuclear and Subnuclear Physics


Book Description

"This book is a revised and updated version of the most comprehensive text on nuclear physics, first published in 1995. It maintains the original goal of providing a clear, logical, in-depth and unifying treatment of modern nuclear theory, ranging from the nonrelativistic many-body problem to the standard model of the strong, electromagnetic, and weak interactions. In addition, new chapters on the theoretical and experimental advances made in nuclear physics in the past decade have been incorporated." "This book is designed to provide graduate students with a basic understanding of modern nuclear and hadronic physics needed to explore the frontiers of the field. Researchers will benefit from the updates on developments and the bibliography."--Jacket.







Diffusion, Atomic Ordering, and Mass Transport


Book Description

One of the fundamental objectives of physical geochemistry is to understand the evolution of geochemical systems from microscopic to regional and global scales. At present there seems to be a general recognition of the fact that internal properties of minerals record important aspects of the evolutionary history of their host rocks which may be unraveled by very fine scale observations. A major focus in the development of geochemical research in the last thirty years has been the application of classical thermodynamics to reconstruct the conditions at which the states of quenched mineralogical properties of rocks have equilibrated during the course of their evolution. While these works have funda mentally influenced our understanding ofthe physico-chemical history ofrocks, in recent years petrologists, mineralogists, and geochemists have been making greater efforts towards the application of kinetic theories in order to develop a better appreciation of the temporal details of geochemical processes. The present volume brings together a variety of current research on transport in systems of geochemical interest from atomic to outcrop scales. A major theme is atomic migration or diffusion, and its various manifestations on microscopic and macroscopic scales. Transport in the solid state is controlled by diffusion and is responsible for the states of atomic ordering and relaxation of composi tional zoning in minerals, development of compositional zoning during cooling, exsolution lamellae, and creep.